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CHAPTER 1. GENERAL INTRODUCTION 

1. General Overview 

The field of quantum chemistry is generally concerned with the behavior of atomic, 

molecular, and crystalline systems. Over time, a variety of theoretical models have been 

developed to interpret chemical phenomena at this fundamental level. These models allow 

chemists to go beyond the limits of experiment and provide deeper insights into chemical 

behavior.  

All theoretical models have specific strengths and weaknesses.  For example, some 

methods are capable of treating systems composed of thousands of atoms, while others 

provide a high level of accuracy that can be applied to systems comprised of only a few 

atoms. Much of the development in quantum chemistry is directed toward the design of 

highly sophisticated theoretical models that require a practical amount of computational 

effort such that quantum computations can be performed on personal workstations. 

2. Dissertation Organization 

 The present work contains six chapters, which are either in press, accepted, or in 

preparation for submission to the appropriate journals. 

 Chapter 2 describes an investigation of the morphology of the Si(100) surface, which 

is modeled using molecular clusters treated with the occupation restricted multiple active 

space (ORMAS) method. Chapter 3 describes the implementation of a quasi-degenerate 

second-order perturbation theory for ORMAS reference wavefunctions (ORMAS-PT). 

Chapter 4 describes an investigation into the diffusion of Ga on the Si(100) surface. Chapter 

5 describes the relation between electronic molecular orbitals and excited state properties. 
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Chapter 6 describes an application of the fragment molecular orbital (FMO) method to a 

series of mesoporous silica nanoparticles. 

3. Theoretical Background 

 The time-dependent Schrödinger equation1 (Eq. 1) is the fundamental expression that 

describes the evolution of quantum systems. In Eq. 1:  !  is Planck’s constant over 2!, 

i = -1 , H is the Hamiltonian operator, and "(r,R,t) is a wavefunction. The wavefunction 

depends on time t and the electronic (nuclear) coordinates   r (R). 

 

 
i! !
!t
"(r,R,t) = H"(r,R,t)                                                                                                 (1)  

 
 The majority of applications in the field of quantum chemistry focus on stationary state 

solutions of the Schrödinger equation. Unlike the time-dependent Schrödinger equation, the 

time-independent analogue (Eq. 2) can be expressed as an eigenvalue problem.  

 
H! r,R( ) = E! r,R( )                                                                                                          (2)  

 
The time-independent Schrödinger equation is a second-order differential equation that 

depends only on the nuclear and electronic degrees of freedom. The eigenfuction ["(r,R)] in 

Eq. 2 corresponds to a stationary state wavefunction that depends on the electronic (r) and 

nuclear coordinates (R). The associated eigenvalue (E) corresponds to the total energy of the 

quantum state described by the wavefunction.  

 The Hamiltonian operator H is expressed in atomic units as shown in Eq. 3, where: !i
2  

is the Laplacian of particle i, mA is the mass of nucleus A, ZA is the charge of nucleus A, ri 
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represents the coordinates of electron i, and RA represents the coordinates of nucleus A.  

 

 

H = ! 1
2

"i
2

i =1

electrons

#
Te

! "## $##
 ! 1

2
"A

2

mAA =1

nuclei

#
Tn

! "# $#
 + ZA

RA- rii =1

electrons

#
A = 1

nuclei

#
Ven

! "### $###
 + 1

ri - rji > j

electrons

#
Vee

! "## $##
 + ZAZB

RA- RBA > B

nuclei

#
Vnn

! "## $##
           (3)  

 
Each component of the Hamiltonian operator is classified into one of five terms: the kinetic 

energy of electrons (Te), the kinetic energy of nuclei (Tn), the electron-nuclear attraction 

(Ven), the electron-electron repulsion (Vee), and the nucleus-nucleus repulsion (Vnn). 

Relative to the electronic motion, the nuclei move at a much slower velocity, as they 

are roughly three orders of magnitude more massive than the electrons. This gives the 

impression that electrons exist in a static field of nuclei, indicating that the nuclear and 

electronic motions can be separated. One way to separate these interactions is by fixing the 

positions of the nuclei in space (eliminating the Tn term in Eq. 3) and treating the Vnn term as 

a constant, a procedure commonly referred to as the Born-Oppenheimer approximation.2   

Through the use of this approximation, the time-independent Schrödinger equation can be 

reduced to a second-order differential equation that depends on the electronic degrees of 

freedom only. The three terms in Eq. 3 that do not exclusively depend upon the nuclear 

coordinates (Te, Ven, Vee) comprise the electronic Hamiltonian Helec (Eq. 4); however, Helec 

depends parametrically on the nuclear coordinates. Solutions to the electronic Hamiltonian 

are represented as "(r) in Eq. 5. 

 

Helec = ! 1
2

"i
2

i =1

electrons

#  !  ZA

RA- rii =1

electrons

#
A =1

nuclei

#  +  1
ri - rji > j

electrons

#                                                     (4)  

Helec!elec r( ) = Eelec!elec r( )                                                                                                  (5)  
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Within the Born-Oppenheimer approximation, Eelec corresponds to the total electronic 

energy of a molecule. The potential energy expression U(R) requires the addition of a nuclear 

repulsion term to Eelec (Eq. 6).  

 

U R( ) = Eelec +  ZAZB

RA- RBA > B

nuclei

!                                                                                              (6)

 
Since the nuclei are stationary, a classical point charge model can be used to treat the nuclear 

repulsion term. This gives rise to the concept of a potential energy surface (PES), a tool that 

describes how the energy of a system varies with the nuclear degrees of freedom. 

The exact electronic wavefunction, "(r), is a highly complex function that depends on 

the coordinates of all electrons and nuclei. Since the kinetic energy (Te) and electron-nuclear 

attraction (Ven) terms are additive with the electronic indices, it is reasonable to cast the 

electronic wavefunction in a form such that the electronic coordinates are separate. Unlike 

the Te and Vne terms, Vee is not a function of a single electronic coordinate but is instead a 

function of a pairs of electronic coordinates (pair-wise additive). As a result, it is impossible 

to find solutions to Helec in which the variables are separable. To avoid this problem, Hartree-

Fock (HF) theory employs the mean field approximation3 to replace the two-electron 

repulsion term (Vee) in Eq. 4 with a one-electron potential, !HF (1) (Eq. 7). 

 

f (1) = ! 1
2
"1

2 !  ZA

RA- r1A=1

nuclei

#  +  $HF (1)                                                                             (7)  
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 The !HF (1)  potential accounts for the interaction of electron 1 with the effective field of all 

other electrons. !HF (1)  leads to the one-electron Fock operator (Eq. 7), comprised of terms 

that are additive such that separation of variables is possible.  

Since the Fock operator is a one-electron expression, an approximate wavefunction 

can be formed that is comprised of a separate function (!m) for each electron. These 

functions, called molecular spin-orbitals, are constructed as a linear combination of atomic 

orbitals  "k (Eq. 8). In Eq. 8, m and k refer to the molecular and atomic orbital indices, 

respectively. 

 
!m = ckm"k

k
#                                                                                                                    (8)  

 
The product of these molecular orbitals is referred to as a Hartree product !HP (Eq. 9), which 

is not the correct form of a wavefunction. 

 
!HP = "1"2"3..."N                                                                                                              (9)  
 
Since an electron is a fermion, the sign of a wavefunction must change when the coordinates 

of any two electrons are exchanged. In order to comply with this anti-symmetry principle, the 

Hartree product must be antisymmeterized in order to construct a proper HF wavefunction. A 

HF wavefunction can be expressed in the compact form as a Slater determinant4 (Eq. 10).  

 
!HF = "1"2"3..."N                                                                                                           (10)  
 
 
 The HF approximation is the central ab initio approach to treatments of electronic 

structure in atomic and molecular systems. Because the HF potential in Eq. (7) depends on 
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knowledge of the HF orbitals, the HF equations must be solved iteratively for the orbitals and 

the orbital energies. The iterative process is called the self-consistent field (SCF) equations.  

The dependence of the HF potential on the HF orbitals is seen from the HF equations (Eqs. 

11-13). In Eq. 11, h(1) represents a one-electron operator that accounts for the kinetic energy 

of the electrons and electron-nuclear attraction, Jb(1) is the coulomb operator (Eq. 12), and 

Kb(1) is the exchange operator (Eq. 13).  

 
f (1) = h(1) +!HF (1) = h(1) + Jb (1) + Kb (1)

b
"

b
"                                                                  (11)  

 
Jb (1)!a (1) = dx2!b

*(1)r12
"1!b (1)# ]!a (1)                                                                                 (12)  

 
Kb (1)!a (1) = dx2!b

*(1)r12
"1!a (1)# ]!b (1)                                                                                (13)  

 
The HF equations define the energy of orbital !a as #a (Eq. 14) 

 
f (1)!a (1) = "a!a (1)                                                                                                            (14)  

 
Solutions to the HF SCF equations correspond to an optimal set of molecular orbitals that 

minimize the energy of a molecular system, by making use of the variational principle. This 

means that the calculated energy of any HF wavefunction, EHF, is guaranteed to be an upper 

bound to the exact non-relativistic energy Eexact (Eq. 15). 

 
Eexact ! EHF                                                                                                                         (15)  

 
 Although HF theory can determine a wavefunction for complex multi-electron 

systems, the wavefuntion may not be suitable to describe certain chemical processes (i.e. the 

dissociation of a chemical bond). An example of the breakdown of the HF method is 
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provided by the HF PES of H2. The HF dissociation curve for H2 does not proceed to the 

correct limit. The reason for this failure is that HF theory does not correlate the motions of 

electrons with one another. This fact has led to the development of many post-HF methods to 

provide more reliable potential energy surfaces than HF. The correlation energy (Eq. 16) is 

defined as the difference between the energy expectation value of the exact non-relativistic 

(Eexact) and HF (EHF) solutions. 

 
Ecorr = Eexact ! EHF                                                                                                               (16)  

 
 The HF wavefunction ("HF) provides the lowest variationally bound energy 

expectation value a single configuration can provide. To form a better approximation to the 

exact non-relativistic wavefunction, a natural extension of HF is to expand the wavefunction 

in a basis of configurations. In what is known as configuration interaction (CI), an 

approximate wavefunction (#CI) is expanded within a finite basis of determinants or spin-

adapted configuration state functions. The HF reference determinant ("HF) weighted by the 

appropriate CI coefficient (CHF) is the leading term in this expansion (Eq. 17).  

 

 
!CI = CHF"HF + CS"S

S
# + CD"D

D
# +!                                                                        (17)  

 
Each additional term corresponds to a configuration that is classified as a single (!S ,CS ), 

double (!D ,CD ), or a higher excitation from occupied to unoccupied MOs.  

In the limit of CI (full CI), the wavefunction is expanded within a set of determinants 

that correspond to all possible excitations from occupied to unoccupied MOs. This results in 

exact, non-relativistic solutions (within the Born-Oppenheimer approximation and the atomic 
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basis set) to the time-independent Schrödinger equation. For practical reasons, applications 

of CI usually involve a truncated expansion. 

In additional to ground state properties, CI also has the flexibility to explicitly 

describe excited states. The simplest level of theory in CI used for excited state properties is 

referred to as CI +single excitations (CIS). CIS truncates the CI expansion after the first 

summation in Eq. 17. The reliability of the CI method can be systematically improved if 

configurations that correspond to higher order excitations are used to expand #CI. However, 

there is a concomitant increase in computational expense associated with these 

improvements, and in general a balance must be struck between the desired level of accuracy 

and computational requirements.  

A wavefunction that corresponds to a truncated CI expansion is neither size consistent 

nor size extensive. Size inconsistency is seen from the disagreement in total energy between: 

1) two infinitely separated H2 monomers and 2) twice the energy of a single H2 monomer. A 

method is size extensive if the energy calculated scales linearly with the number of particles. 

Aside from these shortcomings, CI has proven to be an effective tool in the recovery of 

correlation energy such that it is frequently used as a benchmark for other post-HF methods. 

 Many-body perturbation theory (MBPT) is a popular alternative to CI that considers 

correlation effects with better computational scaling. The conventional approach to nth-order 

MBPT treats the exact non-relativistic Hamiltonian H (Eq. 18) as a perturbed independent 

particle Hamiltonian H0, with the energy and wavefunction expanded in n orders of the 

perturbation V (Eqs. 19-20).5,6  

 
H = H0 + !V                                                                                                                      (18)  
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!MPn = !0 + " i! i
i =1

n

#                                                                                                         (19)  

 EMPn = E0 + ! i Ei
i =1

n

"                                                                                                          (20)  

 
The intent of nth-order perturbation theory is to systematically include higher order 

corrections to better approximate the exact energy and wavefunction. In particular, the 

formalism of nth-order Møller and Plesset (MPn) theory7 has found great importance as a 

reliable, size consistent, and size extensive method. 

MP2 (n = 2) accounts for ~80-90% of the total correlation energy, with the total 

energy though second-order, E(MP2), computed by Eq. 21.  

 

E(MP2) = EHF +
!D V !HF

2

ED
(0) " EHF

(0)
D
#                                                                                    (21)  

 
With respect to the Hartree-Fock determinant ("HF), the summation in Eq. 21 runs over all 

double excitations from occupied to unoccupied orbitals ("D). The denominators correspond 

to the zeroth-order energy differences between each doubly excited determinant ("D) and the 

HF determinant. Although higher order energy corrections are possible (MP3, MP4…), they 

can lead to unpredictable behavior since the MPn series is sometimes not convergent.  

From system to system, the reliability of perturbation theory depends on how well the 

HF wavefunction approximates the exact non-relativistic wavefunction. In other words, the 

perturbation must be small for perturbation theory to provide reliable results. If the HF 

reference wavefunction is a poor description, convergence of the wavefunction and energy 

expansion (Eqs. 19-20) can be erratic. Compared to HF theory, the multi-configuration self-
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consistent field (MCSCF) method provides a better approximation to the exact non-

relativistic wavefunction. The reliability of the MCSCF approach originates from its 

inclusion of non-dynamic correlation effects. Non-dynamic correlation effects are important 

in chemical systems that exhibit near degeneracies, for example, in the vicinity of conical 

intersections, during bond breaking, in radical chemistry, electronic excited states, and 

unsaturated transition metal compounds.  

Like CI, the MCSCF wavefunction is expanded within a subset of determinants. 

These determinants are constructed from a set of active orbitals and electrons that are deemed 

most important for the chemical behavior under examination. Unlike CI, the orbitals that 

comprise each determinant in the MCSCF expansion are re-optimized within the CI 

wavefunction. Since MCSCF is rooted in the CI method, it has the ability to treat excited 

state properties. The most common implementation of MCSCF is the compete active space 

self-consistent field (CASSCF) or full optimized reaction space (FORS).8 CASSCF/FORS 

employ a complete active space (CAS), which corresponds to a full-CI within a subset of 

active orbitals and electrons.  

All occupied orbitals in HF theory contain either one or two electrons. Unlike HF 

theory, MCSCF permits non-integer orbital occupancies in general, and nonzero occupancies 

of antibonding orbitals in particular. Due to the flexibility of MCSCF wavefunctions, the 

ground state energy expectation value is lower than HF theory. The difference between the 

HF and MCSCF ground state energies is referred to as the non-dynamic correlation energy.  

 Since MCSCF captures only non-dynamic correlation effects, it is not suited to predict 

experimental observations. This has led to the development of a variety of multi-reference 

perturbation theory (MRPT) methods. Compared to single reference MP2, MRPT is more 
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reliable since the underlying MCSCF wavefunction is a better approximation to the exact 

wavefunction (smaller perturbation). It is also possible to apply MRPT to more than one state 

(simultaneously) as in the multi-configuration quasi-degenerate perturbation theory 

(MCQDPT) method.9 

Although CASSCF and MRPT are highly reliable methods, they are computationally 

demanding as they scale with the factorial of the number of active orbitals. The occupation 

restricted multiple active space (ORMAS)10 method is an efficient alternative as it includes 

only the most important determinants in the MCSCF-CI expansion. Determinants in the 

ORMAS-CI expansion are specified through user-defined restrictions on the minimum and 

maximum electron occupation numbers for each user-defined active orbital subspace. If the 

CAS is appropriately partitioned with ORMAS, one can expect a high level of accuracy, 

while many of the ineffective electronic configurations (“deadwood”11) are neglected. Thus, 

ORMAS has the ability to retain only the most important configurations in a CI space. 

All of the theoretical methods presented above correspond to ab initio wavefunction 

methods. A popular alternative to wavefunction methods is first principles density functional 

theory (DFT).12 Instead of a wavefunction, DFT relies on the electronic density [$(x,y,z)] as 

the fundamental quantity for computing atomic and molecular properties. Regardless of the 

number of electrons, the electronic density [$(x,y,z)] is dependent upon three variables such 

that DFT has a computational scaling similar to HF theory. As a result, DFT has found a 

niche as an efficient alternative to ab initio wavefunction methods in the study of large, 

highly correlated systems. 

Modern implementations of DFT almost exclusively employ the Kohn-Sham 

formalism.13 The use of the one-electron Kohn-Sham operator (hKS), defined in Eq. 22, 
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allows the electrons to be treated as independent particles moving in an external potential of 

the other electrons. 

 

hKS = !
1
2
"2 +

ZA

r-rAA

nuclei

# +
$ r '( )
r-r '%  dr '  + Vxc (r)                                                                  (22)  

 
Unlike HF, correlation effects are included via an exchange-correlation functional, VXC(r). If 

the exact exchange-correlation functional were known, DFT would provide exact results. 

Unfortunately, the exact functional remains unknown, a fact that has led to a plethora of 

empirically fitted substitutes. 

The time dependent version of DFT (TDDFT) allows for the determination of excited 

state properties. Compared to ab initio excited state methods, the relatively low 

computational scaling of TDDFT has made it very popular method for computing excited 

state properties. TDDFT involves the treatment of the eigenvalue problem shown by Eq. 23, 

where the left-most term is the response matrix, % represents the excitation energies, and X 

(Y) is a vector that denotes excitation (de-excitation) coefficients.  

 
A  B
B  A

!
"#

$
%&

X
Y

!
"#

$
%& ='

1  0
0 (1

!
"#

$
%&

X
Y

!
"#

$
%&                                                                                           (23)  

 
The response matrix is comprised of matrices A and B, whose elements are displayed in Eqs. 

24-25.  

 
Aia,jb = ! ij!ab "a # " i( ) + 2 ia jb( ) + ia fxc jb( )                                                                     (24)                                                      

Bia,jb = 2 ia jb( ) + ia fxc jb( )                                                                                               (25)  
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The leading term on the diagonal of matrix A (Eq. 24) is the orbital energy difference 

between occupied orbital ‘i’ and unoccupied orbital ‘a’. The remaining terms in A (and B) 

correspond to two-electron integrals between occupied MOs i,j and unoccupied MOs a,b.  

One simplification that is routinely applied to the TDDFT eigenvalue problem is the 

Tamm-Dancoff approximation (TDA).14 The TDA reduces the complexity of Eq. 23 by 

neglect of the Y component in the solution, i.e. Y=0, and hence neglect of the B matrices 

(Eq. 26).  

 
AX =!X                                                                                                                          (26)  

 
It has been observed that TDA-TDDFT can often perform as well as TDDFT for excited 

states, especially those that have significant charge transfer or Rydberg character.15 

Although the electronic structure methods presented above are commonly employed 

to explain chemical phenomena, they are practical for systems comprised of a modest 

number of heavy atoms (~ 100 heavy atoms). If there is a desire to examine a larger system, 

one will typically examine just the region of the system that is the most chemically 

important. In order to efficiently treat large molecular systems on the order of 104-105 atoms 

with only quantum mechanics, fragmentation methods provide a practical approach. Over the 

years, several fragmentation methods have been developed in an effort to treat such large 

molecular systems.16,17,18,19,20 In particular, the fragment molecular orbital (FMO) method has 

shown great promise for proteins, silicon nanowires, and zeolite materials. 21 

In the FMO method, a molecular system of interest is split into fragments, which are 

referred to as monomers. A QM calculation is then performed for each monomer in a 
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Coulomb field constructed from all other monomers. As the Coulomb field reflects the total 

density, the monomers are iterated until the system has converged to self-consistency. Since 

the sum of all monomer energies is a poor estimate of the true energy, it is necessary to 

include two-body (dimer) corrections. The dimer corrections are also computed in the 

Coulomb field of the remaining (n-2), but the dimers are not iterated to self-consistency. For 

increased accuracy, one can compute higher order corrections such as three-body (trimer) 

interactions in a similar manner. Eq. 27 is used to determine the total energy of a system 

treated with FMO. In Eq. 27: EI  is the monomer energy, EIJ is the dimer energy, andEIJK is 

the trimer energy. 

 

 

EFMO = EI
I
! + (EIJ " EI " EJ )

I>J

N

! +

[(EIJK " EI " EJ " EK ) " (EIJ " EI " EJ ) "
I>J>K

N

!                              

(EJK " EJ " EK ) " (EKI " EK " EI )]+!                                                        (27)
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CHAPTER 2. AN ORMAS-SCF STUDY OF SILICON(100) SURFACE 
CLUSTERS 

 
A paper published in The Journal of Physical Chemistry A 

 
Luke Roskop and Mark S. Gordon 

 

An occupation restricted multiple active space (ORMAS) study of clusters that represent the 

silicon(100) surface (up to nine surface dimers) is discussed. The accuracy of three different 

active orbital ORMAS partition schemes for Si(100) surface clusters are compared. In 

addition to ORMAS-SCF calculations, generalized valence bond-perfect pairing (GVB-PP) 

properties are generated for comparison purposes. The ability of ORMAS to generate a 

reliable multi-configurational zeroth order wavefunction is systematically tested and when 

possible is compared to the full complete active space self-consistent field (CASSCF) 

method. This provides good benchmarks for the accuracy of ORMAS compared to CASSCF. 

It is demonstrated that ORMAS consistently provides a high degree of accuracy with a 

significantly reduced computational effort relative to a CASSCF calculation. For the largest 

cluster, for which a full CASSCF calculation is not possible, ORMAS predicts that the 

Si(100) surface dimers are symmetric.  

1. Introduction 

For some time it has been understood that crystalline surfaces promise to play a 

crucial role as a support structure for future nanodevices and organic functionalization.1,2 

These applications will undoubtedly call for a deeper understanding regarding the electronic 

structure on a variety of surfaces. One such system relevant to this work is the Si(100) 

surface. It was first suggested through low energy electron diffraction (LEED) experiments 

that the reconstructed Si(100) surface is composed of rows of dimerized Si atoms.3 These 
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surface dimers are highly reactive to the adsorption of adatoms/molecules resulting largely 

from the diradical nature of the reconstructed surface dimers. Still more interesting to some is 

the theoretical and experimental controversy4,5,6 regarding whether the ground state Si(100) 

surface dimers are buckled7,8 or symmetric.9,10 Consequently, the computational treatment of 

this material is not a trivial matter and the necessity for reliable, cost effective surface 

methods is critical. Geometry searches performed at high levels of theory (coupled cluster 

theory with single, double, and perturbative triple excitations (CCSD(T)) and multi-reference 

second order perturbation theory (MRPT2)) confirm that the Si9H12 (single dimer) cluster 

ground state structure is symmetric (not buckled).11 For larger surface models, it has been 

argued through the use of diffusion Monte Carlo (DMC) and quantum Monte Carlo (QMC) 

methodologies that dynamic correlation significantly influences surface dimer 

symmetry.12,13,14 These DMC simulations examined structures obtained with plane wave 

density functional theory (DFT). It was found that the asymmetric (buckled) structures are 

minima on the ground state potential energy surface (PES). A conflicting study demonstrated 

using MRPT2 energies on the CASSCF (complete active space self-consistent field) PES that 

symmetric structures are the true minima.15 The origin of this discrepancy may be attributed 

in part to the reference geometries that were employed, since DFT favors buckling and 

CASSCF prefers the symmetric structure. 

The choice of reliable Si(100) surface methods requires a careful consideration of the 

surface dimers formed in the course of surface reconstruction. As pointed out by Redondo 

and Goddard,16 a single determinant wave function is not appropriate for describing these 

dimer bonds since they are not truly closed shell species. Rather, the surface dimers exhibit 

significant diradical character. Indications of multi-determinant treatments are negative !* 
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RHF (restricted Hartree-Fock) singlet orbital energies and calculated Si dimer bond lengths 

(~2.30Å) that are between those of a single (~2.39Å) and double (~2.19Å) silicon-silicon 

bond.17 Two suitable methods for constructing appropriate zeroth order wave functions for 

these surface clusters are multi-configurational self-consistent field (MCSCF)18,19 and 

generalized valence bond-perfect pairing (GVB-PP).20 

Both MCSCF and GVB-PP possess the flexibility in the wavefunction, due to the 

incorporation of multiple electronic configurations, thereby permitting non-integer orbital 

occupancies in general, and nonzero occupancies of antibonding orbitals in particular. This is 

not possible in single determinant methods, such as HF or DFT. For HF and DFT the natural 

orbital occupation number (NOON) for an occupied molecular orbital (MO) is always 2 

(doubly occupied MO) or 1 (singly occupied MO), while the NOON for an unoccupied MO 

is 0. For multi-configuration wavefunctions, NOONs need not be integers. A useful measure 

of multi-configuration character is the set of natural orbital occupation numbers.21 Indeed, a 

NOON that is significantly smaller than 2 for a supposedly doubly occupied orbital or a 

NOON that is significantly larger than 0 for a supposedly unoccupied orbital is a good 

indicator that a multi-configuration description is needed. For dimers on the Si(100) surface, 

the NOONs for the ! (!*) orbitals are ~1.66 (0.33), thereby indicating significant diradical 

character and the need for a multi-configuration description. 

The most rigorous MCSCF method available is the full optimized reactive space 

(FORS)22,23 or CASSCF.24,25,26 FORS/CASSCF active spaces are typically limited to the 

configurational mixing of 16 electrons in 16 orbitals (16,16), since the number of 

determinants (or configuration state functions) scale factorially. For the Si(100) surface, 

capturing the majority of dimer interactions for accurate reaction models, and minimizing 
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“edge effects”, may require large sized clusters (as many as 9 dimers or more).  Practical 

concerns then arise dealing with model size since large surface clusters would demand 

impractically large active spaces. So, one quickly reaches the limitations of the CASSCF 

method in applications to the Si(100) surface, and is forced to settle for a truncated (perhaps 

less accurate) model. 

Over the past 25 years, developments in approximate FORS/CASSCF methods have 

resulted in several alternatives, including the restricted active space self-consistent field 

(RASSCF),27 quasi-complete active space (QCAS),28 local methods such as the multi-

reference weak pairs local configuration interaction29 and the local configuration interaction 

method of Saebø and Pulay,30 internally contracted multiconfigurational-reference 

configuration interaction (CI) method,31 and occupation restricted multiple active space 

(ORMAS).32 

RASSCF divides a complete active space (CAS) into three orbital subspaces (RAS1, 

RAS2, RAS3) in which all RAS1 orbitals are doubly filled and all RAS3 orbitals are 

unoccupied in the HF reference. The RAS2 subspace is a mixture of occupied and 

unoccupied orbitals. If needed, RASSCF can consider just two of the orbital subspaces. The 

allowed number of holes and particles in each subspace are user defined as follows: RAS1 

excites 0,1,2,…,n electrons into RAS2 and RAS3 while RAS3 can accept 0,1,2,…,m 

electrons from RAS1 and RAS2.  

QCAS divides a CAS space into any number of orbital subspaces such that each 

subspace itself is a CAS.  The configurations are determined as products of the 

configurations generated from each of the orbital subspaces. In contrast to RASSCF, QCAS 

allows for any number of subspaces between which electrons are not permitted to excite. 
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Local CI methods rely on the behavior that localized orbitals separated by large 

distances are weakly correlated. Based on this, the CI space is reduced through elimination of 

configurations that result from simultaneous excitations between localized orbitals that are 

largely separated. The novel approach of ORMAS reduces the complexity of a 

computationally prohibitive CI space through greater flexibility in partitioning than RASSCF 

and QCAS. The determinants included in the ORMAS-CI expansion are specified through 

user-defined restrictions on the minimum and maximum electron occupation numbers for 

each user-defined orbital subspace. Using ORMAS to appropriately partition a CAS, one can 

eliminate many ineffective electronic configurations (“deadwood”33) that contribute 

negligibly to the molecular energy. In this sense, the process has an analogous effect to that 

of the pre-screening of two-electron integrals. Thus, ORMAS has the ability to retain only 

the most important configurations in a CI space.  

The determinants in an ORMAS calculation are selected by the (user-defined) 

minimum and maximum electron occupations imposed on each orbital subspace. As an 

example, consider a pair of Si-Si dimers on the Si(100) surface. A possible active space for 

such a system is a CAS(4,4) space, corresponding to two !, !" orbital sets, one set for each 

dimer (36 determinants). This CAS(4,4) orbital space could be divided into two !, !" (2,2) 

subspaces, one for each dimer while imposing minimum (maximum) electron occupation 

numbers of 2 (2) for each subspace (18 determinants). This means that in any one of the 

determinants used in the ORMAS-CI expansion, there will never exist one in which there are 

more or less than two electrons in each orbital subspace. This smaller CI space will increase 

the error compared to the full CAS, but if the partitioning is carried out appropriately, this 
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error can be negligible. If necessary, one can systematically include (at a cost) inter-subspace 

excitations until the desired property converges. 

The present work presents a systematic test of the ORMAS method by characterizing 

Si(100) surface clusters of increasing size. This will demonstrate the utility of the ORMAS 

method to significantly expand the effective MCSCF active space. It will also provide a more 

extensive multi-reference treatment of this surface than has heretofore been possible.  

2. Computational Methods 

 The accuracy of an ORMAS calculation depends on both the grouping of active 

orbitals into subspaces and the minimum/maximum electron occupancies imposed on each 

subspace. This partitioning relies on chemical intuition and on a series of tests that should be 

conducted to determine the essential configurations that one needs in the ORMAS wave 

function. The CASSCF analysis of one-, two- and three- Si-Si dimer clusters shown in Table 

1 demonstrates that the natural orbital occupation numbers (NOON) of the !/!* orbital pair 

remain constant as the cluster size increases. This means that in the MCSCF wave function, 

the surface dimers are only weakly coupled to one another.  

In view of the weak dimer-dimer interactions, one can imagine three possibilities for 

grouping the active orbitals for a Si(100) surface cluster containing more than one dimer 

(summarized in Table 2). The key orbitals of each dimer, the Si-Si ! and !* orbitals and the 

corresponding " and "# orbitals are shown in Figure 1. The first two schemes in Table 2 

involve grouping the orbitals of each surface dimer into their own subspaces (number of 

subspaces = number of dimers) with scheme 1 involving the ! and !* orbitals only. The third 

possibility (scheme 3) further subdivides the orbital subspaces of scheme 2 into !- and "-
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spaces (number of subspaces = 2*(number of dimers)). All orbital groupings set the 

minimum and maximum electron occupation restrictions for each subspace to be identical 

(minimum = maximum).  

In the present work, two (Figure 2a, 3a), three (Figure 3c), four (Figure 2b, 3b), five 

(Figure 3d, 3e) and nine (Figure 3f) dimer clusters are used to model the Si(100) surface. 

Since small Si(100) cluster calculations fail to capture effects of the bulk crystalline surface, 

the mechanically embedded quantum mechanics/molecular mechanics (QM/MM) method 

surface integrated molecular orbital molecular mechanics (SIMOMM34) is employed using 

the MM3 force field parameters.35 As the cluster models studied here can reach larger than 

100 atoms, the Stevens-Basch-Krauss-Jasien-Cundari (SBKJC) effective core potentials 

(ECP) augmented with a set of d polarization functions (SBKJC ECP(d))36 are used in this 

investigation. All active space orbitals are selected from a localized set of RHF orbitals 

determined using the Boys orbital localization procedure.37 Symmetry is not imposed with 

ORMAS calculations since orbital localization breaks this property. 

Setting CASSCF as the reference, the energy errors, NOON values, Si-Si dimer bond 

lengths and number of determinants are compared to the results obtained by ORMAS and 

GVB-PP. All reported properties for each method correspond to optimized geometries at 

their respective levels of theory (CASSCF, ORMAS or GVB-PP). Since the computational 

effort required to examine the nine-dimer cluster with CASSCF is prohibitive, ORMAS 

properties are compared only to GVB-PP. Due to the computational expense associated with 

calculating the Hessian for larger clusters, dimer buckling mode frequencies are examined 

for the smallest model (two-dimer) system only. ORMAS and CASSCF analytic Hessians38 

are used for the full QM cluster models while only semi-numerical Hessians are available for 
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the hybrid QM/MM SIMOMM models. All calculations are performed with the GAMESS39 

electronic structure code. 

3. Results and Discussion 

CASSCF, ORMAS and GVB-PP properties corresponding to the two-dimer Si(100) 

QM cluster (Figure 2a) are shown in Table 3 (top). The smaller ORMAS(4,4) orbital 

partition [2(!!*)2] uses half as many determinants as the full CASSCF calculation, with only 

minor errors in the total energy and the dimer bond lengths (!0.14mh and ~0.01Å, 

respectively, relative to the full CASSCF). The close agreement between CASSCF and 

ORMAS natural orbital occupation numbers (NOON) reinforces the notion that the surface 

dimers are weakly interacting with one another in the MCSCF wavefunction. Evidence for 

this is clear since ORMAS0 achieves chemical accuracy, while neglecting the determinants 

that account for electronic excitations from one subspace/dimer to another.  

The characteristic ORMAS buckling mode frequencies (Table 3) are indiscernible 

from the CASSCF frequencies. This illustrates the success of ORMAS, since second order 

properties are typically more sensitive to the constructed wave function than are energies, 

NOON values and geometries. Identical ORMAS and CASSCF vibrational frequencies 

suggest that the two methods have generated similar electron densities. This in turn 

demonstrates that those CASSCF determinants that may be characterized as inter-dimer 

electronic excitations contribute little to the wave function and electron density. GVB-PP 

structures using two geminal pairs [2(!!*)2] agree with CASSCF in both NOON values and 

buckling mode frequencies. The largest error appears in the total energy (11mh) and likely 

results from the limited flexibility of the GVB-PP model. 
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Similar performance is found after incorporating the !/!* orbital pairs. The orbital 

subspaces are created by grouping the active orbitals into one or two orbital subspaces per 

dimer (Schemes 2,3, Table 2). These partitioning schemes result in energy errors of 0.14 and 

1.13mh, respectively (Table 3). All NOON values and bond lengths are in good agreement 

with the full CASSCF calculation. The ORMAS partitioning scheme 3 (two orbital subspaces 

per dimer) results in the largest error for the buckling mode frequencies (~32 cm-1 error). 

Naturally, this error is reduced (~1 cm-1) when the !- and "-spaces are combined (scheme 2). 

This demonstrates the importance of including determinants that describe the excitations 

between " and ! orbitals within a given dimer for this system. The ORMAS(8,8) partitions 

(schemes 2,3) result in slightly greater errors (than ORMAS(4,4)), probably due to ignoring a 

larger number of determinants. Still, the best case ORMAS(8,8) (one subspace per dimer) 

requires less than 37% of the original CASSCF determinants to achieve chemical accuracy. 

The GVB-PP bond lengths and buckling mode frequencies are identical to those determined 

with CASSCF, while the NOON values for the "/"* geminal pairs show slight discrepancies 

when including !/!* geminal pairs. 

Adding bulk effects onto the cluster model discussed above, by using the SIMOMM 

QM/MM approach (Figure 3a), results in negligible differences compared to the QM-only 

cluster calculations (Table 3). Again, the largest discrepancies occur in the buckling mode 

vibrational frequencies. The ORMAS(8,8) partitioning using two subspaces per dimer 

(scheme 3) provides ~1cm-1 accuracy, in contrast to the QM-only cluster counterpart (~32 

cm-1 error). The added structural support from SIMOMM changes the vibrational behavior of 

the surface dimers. The cause of this, as indicated by increased predicted vibrational 
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frequencies (133,138! 192,198 cm-1), is likely a stiffening of the buckling mode vibrations 

due to the existence of the MM region of SIMOMM. In the smaller QM/MM(4,4) 

calculations, ORMAS reproduces the buckling frequencies to ~1cm-1. GVB-PP shows slight 

differences in buckling frequencies and NOON values compared to the full CASSCF 

calculation.  

Now consider the 4-dimer cluster shown in Figure 2b. The full CASSCF (16,16) 

calculation for this system approaches the practical MCSCF limit, since correlating the ! and 

" orbitals would create a Hamiltonian containing more than 165 million determinants (Table 

4). Through sensible active space partitioning, ORMAS treats this system reasonably easily, 

reducing the dimension of the Hamiltonian by ~2 (~3) orders of magnitude using one (two) 

orbital subspace(s) per dimer. First order properties obtained using the ORMAS(16,16) 

partitioning schemes 1-3 (Table 2) provide excellent agreement with the CASSCF(16,16) 

results. The largest energy error corresponds to partitioning scheme 3 (~2.4 mhartree error), 

while the highest accuracy partition (scheme 2) has an error that is much less than 1 mh. The 

results shown in Table 4 were obtained with QM-only clusters. 

 To develop an understanding of the effects of adjacent row interactions, a 3x1 

SIMOMM embedded surface model (Figure 3c) is analyzed in Table 5. There are no 

significant differences between the properties listed in Table 5 and those illustrated in Table 

3 for the analogous 2-dimer 1x2 embedded surface model. ORMAS properties using all 

partitioning schemes scheme are in reasonably good agreement with the full CASSCF 

results; this confirms that electronic excitations between dimers located in adjacent rows are 

insignificant. If the model is further increased in size to contain 5-dimers (5x1 arrangement 
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shown in Figure 3d) there are no significant differences in the predicted results relative to the 

previous 3x1 embedded system (Table 6). 

To simultaneously capture same row and adjacent row dimer interactions, the 

embedded 2x2 cluster (Figure 3b, Table 7) is examined. As with the previous models, inter-

dimer interactions have negligible influence on the surface symmetry since the surface 

remains symmetric. Again, there is significant savings in computational expense by treating 

2-3 orders of magnitude fewer determinants, as for the 4-dimer QM cluster (Figure 2b). The 

larger “5+-dimer” cluster (Figure 3e, the ‘+’ in 5+ refers to the cross like arrangement of 

dimers) properties are summarized in Table 8. Slightly more anti-bonding character is seen 

here as the !* NOON values are larger, suggesting that larger clusters might exhibit slightly 

more multi-reference character. 

Embedding 9-dimers with SIMOMM into a 3x3 arrangement (Figure 3f) produces the 

largest cluster examined in this work. The results are summarized in Table 9. Note that since 

the full CASSCF (18,18) calculation would require more than 2.3 billion determinants, it is 

not a feasible calculation to perform, so no full CASSCF results are presented in the table. 

On the other hand, ORMAS calculations are quite feasible, and results obtained using 

partitioning scheme 1 (Table 2) are presented in Table 9. The goal of this 3x3 arrangement of 

surface dimers is to maximize the interactions on the central dimer from all nearest 

neighbors. Even with the central dimer experiencing the maximum number of nearest 

neighbor interactions, the geometry remains symmetric. The ORMAS and GVB-PP results 

are essentially identical. The qualitative aspects of the ORMAS NOON values and bond 

lengths agree with those discussed previously for the smaller, more computationally 

manageable clusters.  
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4.  Conclusions 

 Several Si(100) cluster models have been investigated using several MCSCF 

methods, including full CASSCF, various ORMAS approximations, and GVB-PP. It has 

been systematically demonstrated that ORMAS determines properties (e.g., bond distances, 

vibrational frequencies, and natural orbital occupation numbers) for large Si(100) surface 

clusters that are in excellent agreement with those obtained with full CASSCF. When the 

CASSCF reference is unavailable, ORMAS properties agree with trends established for 

smaller, more computationally manageable systems (similar NOON values and dimer bond 

lengths). When only (2,2) subspaces are considered, ORMAS and GVP-PP are in close 

agreement with each other. As one would expect, the use of larger ORMAS subspaces 

(which are often necessary) can significantly reduce the error relative to a full CASSCF 

calculation, while the GVB-PP error remains larger. 

Based on the systems examined here, it appears that the Si(100) surface is symmetric 

in the ground state; however, the calculations reported here do not include dynamic 

correlation.40,41,42,43,44,45 To address this issue, a second order perturbation method 

(ORMAS+PT2) is under development.  

Based on the calculations presented here, it is unlikely that larger cluster models at 

the CASSCF level of theory will cause buckling of the surface dimers via inter-dimer 

interactions. The success of the ORMAS approach suggests that the distances between 

dimers is simply too large to allow inter-dimer interactions that are large enough to 

qualitatively alter the results presented here. This large inter-dimer distance is responsible for 

the negligible contributions from the excitations between dimers in ORMAS MCSCF wave 
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functions. It is likely that only subspaces that contain overlapping orbitals would require 

electronic excitations between them.  

The discrepancy between buckling mode frequencies for ORMAS partitioning 

Schemes 2 and 3 (Table 2) indicate that reliable ORMAS Hessians require CI contributions 

from determinants corresponding to excitations between ! and " orbitals. This observation 

should be carefully considered when implementing ORMAS in mechanistic studies involving 

Si(100).  

In general, developing an ORMAS may not be as clear-cut as it is for Si(100). For 

more complex systems, reliable ORMAS calculations will undoubtedly rely on chemical 

intuition and validation through preliminary tests. For example, a suitable ORMAS for 

atomic diffusion of Ga on Si(100) will incorporate dimer orbitals that are strongly interacting 

with Ga orbitals into the same orbital subspace. Orbitals from spectator dimers will remain in 

separate subspaces since their interaction with the “action region” is less significant. 
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Figure 1: Si(100) surface dimer bonding and antibonding molecular orbitals 

 

 
 
Figure 2: Models used for ORMAS, MCSCF, GVB-PP/SBKJC ECP(d) with QM-only 
clusters: 2a) 2x1-Si15H16 and 2b) 1x4-Si42H34. The model designation is axb where ‘a’ is the 
number of rows and ‘b’ is the number of dimers in that row. 
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Figure 3: Models used for ORMAS, MCSCF,GVB-PP/SBKJC(d) QM/MM embedded 
clusters with QM[MM] regions in blue[red]: 3a) 2x1-Si15H16[Si199H92], 3b) 2x2-
Si33H32[Si267H116], 3c) 3x1-Si37H36[Si232H116] 3d) 5x1-Si65H60[Si324H152], 3e) 5+-
Si49H44[Si379H140], and 3f) 3x3-Si71H60[Si379H140]. Shown are the views of the QM (above) 
and QM/MM (below) embedded model. The model designation is axb where ‘a’ is the 
number of rows and ‘b’ is the number of dimers in that row. For 3e, the 5+ in the text refers 
to a sequence of three adjacent dimers in the (100) direction intersecting three adjacent 
dimers in the (010) direction with the central dimer common to both sequences (the ‘+’ in 5+ 
refers to the cross like arrangement of dimers). 
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Table 1: CASSCF natural orbital occupation numbers for the ! and !* orbitals for clusters 
containing one (Si9H12), two (Si15H16) and three (Si21H20) dimers. 

System !1  ! 2  ! 3  !1 *  ! 2 *  ! 3 *  
Si9H12 - - 1.65 0.35 - - 
Si15H16 - 1.64 1.64 0.38 0.34 - 
Si21H20 1.65 1.64 1.62 0.40 0.35 0.34 

 
 
 
Table 2: Summary of partitioning schemes used. 

Scheme Orbital Subspaces 
Min(Max) Electron 

Occupancy/Subspace 
1 2 !! *( )  2(2) 
2 2 !! * "" *( )  4(4) 
3 2 !! *( ) ,2 !! *( )  

 

2(2) 
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CHAPTER 3. QUASI-DEGENERATE SECOND-ORDER 
PERTURBATION THEORY FOR ORMAS-SCF REFERENCE 

FUNCTIONS  
 

A paper accepted by The Journal of Chemical Physics 
 

Luke Roskop and Mark S. Gordon 

 

A multi-configuration quasi-degenerate second-order perturbation method based on the 

occupation restricted multiple active space (ORMAS-PT/ORMAS) reference wavefunction is 

presented. This approach is useful for cases in which a complete active space self-consistent 

field (CASSCF) wavefunction is necessary but computationally impractical. ORMAS gives 

one the ability to approximate an otherwise large CASSCF wavefunction using only a subset 

of the configurations from the CASSCF space. The essential idea behind ORMAS-PT is to 

use the multi-reference Møller-Plesset formalism to correct the ORMAS reference energy. A 

computational scheme employing direct CI methodology is presented. Several tests are 

presented to demonstrate the performance of the ORMAS-PT method. 

1. Introduction 

 For any chemical system, the multi-configurational self-consistent field (MCSCF) 

approach provides the optimum zeroth order approximation to the exact non-relativistic 

wavefunction. The reliability of the MCSCF approach originates in the inclusion of non-

dynamic correlation, which is important in chemical systems that exhibit near degeneracies 

and therefore require a multi-reference description. Near degeneracies commonly occur, for 

example, in the vicinity of conical intersections, during bond breaking, in radical chemistry, 

electronic excited states, and unsaturated transition metal compounds. The accuracy and 

computational demands of an MCSCF calculation depends on the active space that is 
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composed of a set of active orbitals and active electrons. The dimension of this active space 

is the limiting factor in MCSCF treatments. 

Although MCSCF provides qualitatively correct zeroth order wavefunctions, the 

absence of dynamic correlation generally prevents quantitative agreement with experiment. 

Therefore, one needs to use the MCSCF wavefunction as a starting point for multi-reference 

configuration interaction (MRCI) or multi-reference perturbation theory (MRPT) 

calculations. MRPT methods, in particular, differ in the manner in which the Hamiltonian is 

partitioned and in the MCSCF orbital canonicalization.1 The most popular MRPT approaches 

are the complete active space second-order perturbation theory (CASPT2),2 multi-reference 

Møller-Plesset perturbation theory (MRMP),3 and multi-configurational quasi-degenerate 

perturbation theory (MCQDPT).4 The multi-state MCQDPT method reduces to MRMP for a 

single state problem. Both CASPT2 and MRMP/MCQDPT are accurate methods that are 

usually more efficient than MRCI methods.  

Both CASPT2 and MRMP/MCQDPT employ a complete active space (CAS) 

reference wavefunction. This reference wavefunction is a full CI within the active space. 

Since in the CAS approach one iterates the wavefunction to self-consistency, the method is 

commonly referred to as a complete active space self-consistent-field (CASSCF)5 or full 

optimized reaction space (FORS)6 approach. The computational demands of modern MCSCF 

algorithms limit a CASSCF/FORS calculation to 16 electrons distributed among 16 orbitals 

(16,16) or possibly an (18,18) active space if symmetry can be used. Consequently, MRPT 

studies using a CAS reference wavefunction with active spaces that are larger than (16,16) 

are computationally prohibitive and only rarely performed. Another promising technique for 

the treatment of strongly correlated, multi-reference systems is the Density Matrix 
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Renormalization Group approach (DMRG).7 DMRG facilitates the use of significantly larger 

active spaces than traditional MCSCF methods, but in comparison to CASSCF/FORS and 

MRPT, DMRG can be more computationally demanding for a desired level of accuracy.  

Over the past 15 years, developments in approximate CAS MRPT methods have 

facilitated the expansion of feasible CASSCF active spaces within the MRPT approach. 

Examples of such methods are the restricted active space perturbation theory through second 

order (RASPT2),8 quasi-complete active space quasi-degenerate perturbation theory 

(QCASQDPT),9 and general MCQDPT (GMCQDPT).10 The reference wavefunctions for 

RASPT2 and QCASQDPT2 are restricted active space self-consistent field (RASSCF)11 and 

QCAS12 wavefunctions, respectively.  

One issue that is not addressed in some MRPT methods is the treatment of 

determinants that are present in the full CAS reference space but not in the approximate 

reference space. These determinants, referred to here as IECs (internally excited 

configurations), correspond to determinants in the full CAS that are singly and doubly 

excited relative to the reference determinants. IECs should be accounted for in the PT 

correction since they have been shown to be significant in MRPT treatments.10  

The current implementations of RASPT2 do not account for the IEC contributions,8 

while QCASQDPT and GMCQDPT do. Though QCASQDPT and GMCQDPT benefit from 

increased flexibility in the reference wavefunction, the computational efficiency of these 

methods suffers since the PT contributions are determined indirectly. That is, enumeration of 

the determinants that couple to the excited determinants are not directly determined. 

Furthermore, QCASQDPT and GMCQDPT (and MRMP/MCQDPT) require generation of 

the one and two particle density matrices, whereas RASPT2 (and CASPT2) also require three 
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particle density matrices.8 It would therefore be beneficial to develop a general MRPT 

method that takes advantage of direct PT methodology, requires only the first and second 

order density matrices, and accounts for the IEC contributions. 

The present paper introduces an alternate MRPT method that employs the 

determinant based occupation restricted multiple active space (ORMAS)13 wavefunction as 

the zeroth order reference function. The novel approach of ORMAS reduces the complexity 

of a computationally prohibitive CI space through greater flexibility in partitioning than 

RASSCF and QCAS. The determinants included in the ORMAS expansion are specified 

through user-defined restrictions on the minimum and maximum electron occupation 

numbers for each user-defined orbital subspace (see Figure 1). Using ORMAS to 

appropriately partition a CAS, one can eliminate many ineffective electronic configurations 

(“deadwood”14) that contribute negligibly to the molecular energy. In this sense, the ORMAS 

approach has an analogous effect to that of the pre-screening of two-electron integrals. Thus, 

ORMAS has the ability to retain only the most important configurations in a CI space. 

In comparison to RASPT2 and QCASQDPT, ORMAS-PT provides greater flexibility 

within the reference wavefunction. ORMAS can generate the RASSCF wavefunction if 

desired. Currently, ORMAS cannot generate the QCAS reference, but it does have the ability 

to generate a similar function (referred to as ORMAS0) that includes the QCAS reference 

determinants as a subset of the ORMAS0 CI expansion basis. Compared to configuration 

state function (CSF) codes, the ORMAS wavefunction is expanded within a basis of 

determinants, thereby eliminating I/O by efficiently calculating Hamiltonian matrix elements 

“on the fly” (direct CI). The direct CI methodology is adapted for the PT energy 

contributions described below. 
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2. Method 

The conventional approach to nth order perturbation theory considers the exact non-

relativistic Hamiltonian as a perturbed independent particle (zeroth order) Hamiltonian, with 

the energy and wavefunction expanded in n orders of perturbation.15,16 In contrast to single 

reference perturbation theory, MRPT (including restricted open shell (ROHF) PT) is not 

uniquely defined. There have consequently been numerous analyses of the various MRPT 

formalisms. The ORMAS-PT method presented here follows the perturb-then-diagonalize17 

prescription, based on the Hirao parallel direct determinant implementation3,18,19 for 

FORS/CASSCF wavefunctions. As a consequence of the underlying ORMAS reference, 

there are distinct differences in how ORMAS-PT is implemented compared to the 

MRMP/MCQDPT approach that is intended for a CAS reference. The approach taken in this 

section is to present the Hirao MRPT procedure in three parts, followed by a summary of the 

modifications that are required for ORMAS-PT. Kozlowski and Davidson20 have presented a 

thorough review of multi-reference second-order perturbation theory methods.  

(1) Orbital canonicalization: CASSCF orbitals are not uniquely defined, since the 

reference energy is invariant to orbital rotations within the core, the active, and the external 

orbital spaces. To create a consistent set of orbitals, a closed-shell-like Fock operator21 is 

constructed with the predefined MCSCF state-averaged one-particle density matrix (Equation 

1). F in Equation 1 is commonly called the standard Fock operator: 

Fpq = hpq + Drs
ave pq rs( ) ! 1

2
pr qs( )"

#$
%
&'rs

(                                                                                   (1)  

 
In Equation 1 p,q correspond to molecular spin orbitals, hpq is an element of the bare one-

electron Hamiltonian, (pq|rs) is an electron repulsion integral, and Dave is the MCSCF state-
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averaged one-particle density matrix. The standard Fock operator is block diagonalized 

within the core-plus-inactive, the active, and the external orbital sub-blocks. Diagonalization 

of F produces a unique set of canonical orbitals {! } and orbital energies{" } that are required 

in the MRPT expansion. 

(2) Zeroth-order Hamiltonian: The choice of H0 (Equation 2) is conceptually simple 

in that the MRPT zeroth-order energy (E0) is the sum of the occupied orbital energies "i 

weighted by the corresponding diagonal elements of the one-particle density matrix Dii. 

Consequently, the MRMP H0 reduces to the single reference MP2 H0 when considering a 

singlet wavefunction composed one reference configuration. 

E!
(0) = "!

(0) H0 "!
(0) = Dii

!# i
i

occupied

$                                                                                           (2)

 
A variety of correction functions has been applied to the MRMP H0 to improve the reliability 

of MRPT but a summary of these is beyond the scope of the current discussion.20 The present 

study employs the “barycentric” definition of H0 (Equation 2) used by Hirao3 and is 

equivalent to the H0 used in the Kozlowski-Davidson MROPT1 method.20 

(3) Second order energy correction: Based on the approach of Löwdin,17 the scheme 

adopted here first performs the perturbation problem and then removes the degeneracy (if 

any) by solving the secular problem corresponding to the effective Hamiltonian (Heff): 

!"
(0) Heff !#

(0) = E#
MCSCF$"# +

!"
(0) V K K V !#

(0)

E#
(0) % EK

(0)
K

SD(CAS)

&                                                   (3)

 
In Equation 3 # and  $ refer to MCSCF states, E!

MCSCF  is the first order energy for MCSCF 

state $ , E!
(0)  is the “barycentric” energy for state $  defined by Equation 2, EK(0)  is the zeroth 
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order energy for determinant K defined by Equation 4, and the summation runs over all 

singly and doubly excited configurations, from active orbitals into the external orbitals space 

of the MCSCF.  

EK
(0) = K H0 K = Dii

K! i
i

occupied

" = ! i
i

occupied

"                                                                                   (4)

 
Since the diagonal elements of the one-particle density matrix for excited determinant K will 

be either 0 or 1 (in the molecular spin-orbital basis), EK
(0)  is a sum of occupied orbital 

energies corresponding to K. The perturbation, V, comes from Equation 5 and is expressed as 

in Equation 6: 

H = H0 + V          !         V = H " H0                                                                                    (5)  
 

V = h(i)
i
! +

1
riji<j

! " # i
i
!                                                                                                        (6)  

 
In Equations 5-6, H0 is the zeroth order Hamiltonian, h(i) is the bare one-electron 

Hamiltonian for electron i, rij is the interelectronic distance between electrons i and j, and !i is 

an orbital energy. For single state MRPT (MRMP), the effective Hamiltonian (Heff) is a 1x1 

matrix, so the perturbative correction to that state is just the matrix itself. For more than one 

state, a multi-state MRPT requires the diagonalization of Heff (MCQDPT). 

 Now consider a reformulation of the original Hirao MRPT method for the ORMAS-

PT implementation. Modifications of the orbital canonicalization and the second order 

correction are necessary, whereas the definition of the zeroth order Hamiltonian given above 

is retained. 

 (1) ORMAS orbital canonicalization: To ensure that the ORMAS-PT energy is 

consistent regardless of how the reference wavefunction is constructed, the ORMAS-PT 
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second order energy contributions are determined from a set of orbitals that are obtained by 

block diagonalization of the standard Fock operator (Equation 1). The core-plus-inactive and 

virtual sub blocks are treated as previously described. The ORMAS reference energy is not 

invariant under orbital rotations between active subspaces. Therefore, the active orbital sub-

block itself is block diagonalized according to the user defined orbital subspaces. For 

example, suppose an ORMAS active space is configured for 3 active subspaces. There would 

then be 3 active orbital sub-blocks in the standard Fock matrix, instead of a single active sub-

block as is used in a MRMP/MCQDPT treatment. 

 (2) ORMAS-PT second order energy correction: In the limit of merging all ORMAS 

subspaces, the second order energy correction for an ORMAS reference wavefunction is 

equivalent to the corresponding FORS/CASSCF wavefunction. Since a general ORMAS 

employs an incomplete active space, the second order ORMAS-PT energy correction must be 

formulated to account for internally excited configurations (IECs). IECs are defined here as 

single and double excitations from active orbitals to active orbitals for which the excited 

occupations are not consistent with the ORMAS reference occupation restrictions. The 

general ORMAS-PT effective Hamiltonian is constructed according to Equation 7. 

!"
(0) Heff !#

(0) = E#
MCSCF$"# +

!"
(0) V K K V !#

(0)

E#
(0) % EK

(0)
K&CAS

SD(ORMAS)

'

                          +
!"

(0) V K K V !#
(0)

E#
(0) % EK

(0)
K&ORMAS

CAS

'
                                              (7)  

 
Similar to MRMP/MCQDPT, the first term on the right hand side (RHS) of Equation 7 

contributes the MCSCF energy of state ! to the diagonal of the effective Hamiltonian. The 

second term on the RHS of Equation 7 sums over singly and doubly excited configurations, 
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into the external orbital space of the MCSCF. The last term on the RHS of Equation 7 sums 

over the IECs. Neglecting the last term on the RHS of Equation 7 is possible and can provide 

good results,8 but for a rigorous MRPT it is essential that this last term be included. In 

implementing Equation 7, the main challenge is creating a scheme to directly enumerate the 

IECs. This is discussed next. 

The IECs are determined by initially relaxing the ORMAS reference restrictions on 

the minimum and maximum electron occupancies for each orbital subspace.  Appropriately 

modifying the occupation restrictions provides criteria that the IECs must satisfy. Orbital 

subspace specifications permitting, these modifications allow each subspace to accommodate 

one or two additional electrons and to lose one or two electrons. The occupation restrictions 

are modified as follows:  

N*I
max =

NI
max + 2   if NI

max + 2( )  !  number of orbitals in subspace I

NI
max +1    if NI

max +1( )   =  number of orbitals in subspace I            For I = 1,X

NI
max               if  NI

max     =  number of orbitals in subspace I

"

#
$$

%
$
$

     (8)  

 

N*I
min =

NI
min ! 2   if NI

min ! 2( )  "  2

NI
min !1         if NI

min       =  1          For I = 1,X
NI

max               if NI
min      =  0

#

$
%%

&
%
%

                                                        (9)  

 
In Equations 8-9, X is the number of ORMAS orbital subspaces, NI

min NI
max( )  specifies the 

reference occupation restrictions on the minimum (maximum) electron occupations for 

subspace I, and N*I
min N*I

max( )  is the modified minimum (maximum) electron occupation 

restriction for subspace I. Modified occupation restrictions are used to generate ! -groups and 

" -groups, which describe the distribution of the ! -electrons and " -electrons among the X 
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ORMAS orbital subspaces. These ! -groups and " -groups are then combined in a pair-wise 

procedure to find combinations that adhere to the modified electron occupation restrictions. 

For each valid combination, ! -strings and " -strings are directly enumerated13 from the ! -

group and " -group. These ! -strings and " -strings are combined to form determinants; the 

! -strings and " -strings indicate which ! and "  molecular spin-orbitals are occupied. The 

resulting determinants correspond not only to the IECs, but also to the reference determinants 

that must be screened for. 

It is necessary to categorize each IEC specifically, because a single algorithm cannot 

directly determine the energy contributions for all IECs. This is analogous to the need for 

separate treatments of determinants that correspond to valence-to-external vs. active-to-

external electronic excitations, as is required in MRMP/MCQDPT formulations. The scheme 

introduced here classifies each IEC into one of eight types; these types are listed in Table 1 

and are discussed in detail in the following paragraphs. Each IEC classification is based upon 

how the electron occupations in each subspace are not consistent with the minimum and 

maximum electron occupation restrictions of the reference specifications (NI
min  and NI

max ; for 

I = 1,X). With respect to reference occupation restrictions, an inconsistency would 

correspond to a subspace being ‘over-occupied’ (too many electrons) or ‘under-occupied’ 

(too few electrons). For example, if NI
max = 4  for subspace I and subspace I actually contains 

five electrons, then subspace I is ‘over-occupied’ by one electron.  

The symbol RI
P,Q  is introduced here to monitor whether subspace I is consistent with 

the reference occupation restrictions when ! -group P is combined with " -group Q. In 
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Equation 10 below, NI,P
!  (NI,Q

! ) is the number of ! -electrons (" -electrons) assigned to 

subspace I from ! -group P (" -group Q), NI
min  and NI

max  (defined above) are the minimum 

and maximum occupation restrictions for reference subspace I. An ‘under-occupied’ (‘over-

occupied’) subspace corresponds to RI
P,Q < 0  ( RI

P,Q > 0 ) while RI
P,Q = 0  indicates subspace I 

is consistent with the reference occupation restrictions. For example, RI
P,Q = -2 indicates 

subspace I is ‘under-occupied’ by two electrons. 

RI
P,Q =

NI,P
! + NI,Q

" # NI
min( )     if NI,P

! + NI,Q
" # NI

min( ) < 0 

NI,P
! + NI,Q

" # NI
max( )    if NI,P

! + NI,Q
" # NI

max( ) > 0       For I = 1,X

            0                               otherwise

$

%
&&

'
&
&

                                (10)

 
RI
P,Q  can be used to compute a label, !P,Q (employing Equations 11-14 below) that 

classifies a set of IECs that are generated from the combination of !-group P with "-group Q. 

YP,Q = RI
P,Q

I

X

!                                                                                                                           (11)

 

ZP,Q = RI
P,Q

I

X

!                                                                                                                         (12)

 

! P,Q =
1 if YP,Q " 1

-1 if YP,Q < 1

#
$
%

&%
                                                                                                               (13)

 
!P,Q = " P,Q YP,Q + 2ZP,Q( )                                                                                                         (14)
 
In Equations 11-14, YP,Q is a sum over all ‘under-occupations’ and ‘over-occupations’ (RI

P,Q ) 

for each subspace, ZP,Q is an absolute sum over all ‘under-occupations’ and ‘over-
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occupations’ for each subspace, ! P,Q  is a sign transfer function, and !P,Q is the resulting IEC 

label. All IEC labels are calculated on the fly since their storage can get excessive. 

The first column in Table 1 corresponds to all possible !P,Q   labels (IEC type). 

Regardless of the how the ORMAS wavefunction is constructed, only eight values of !P,Q 

correspond to single or double IECs. The value !P,Q=1 corresponds to the reference 

configurations. Each of these values is described next. Unless indicated otherwise, all 

subspaces are consistent with the reference occupation restrictions.  

!P,Q=1: all subspaces adhere to reference occupation restrictions (not excited 

configurations) 

!P,Q=-3: one subspace is ‘under-occupied’ by one electron. 

!P,Q =3: one subspace is ‘over-occupied’ by one electron. 

!P,Q=4: one subspace is ‘over-occupied’ by one electron and one other subspace is 

‘under-occupied’ by one electron. 

!P,Q=-6: either one subspace is ‘under-occupied’ by two electrons or two subspaces 

are both ‘under-occupied’ by one electron. 

!P,Q=6: either one subspace is ‘over-occupied’ by two electrons or two subspaces are 

both ‘over-occupied’ by one electron. 

!P,Q=-9: one subspace is ‘over-occupied’ by one electron and either one other 

subspace is ‘under-occupied’ by two electrons or two other subspaces are both 

‘under-occupied’ by one electron 
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!P,Q=9: one subspace is ‘under-occupied’ by one electron and either one other 

subspace is ‘over-occupied’ by two electrons or two other subspaces are both ‘over-

occupied’ by one electron. 

!P,Q=16: (four situations are possible) 

1) one subspace is ‘under-occupied’ by two electrons and one other subspace 

in ‘over-occupied’ by two electrons. 

2) one subspace is ‘under-occupied’ by two electrons and two other subspaces 

are both ‘over-occupied’ by one electron. 

3) two subspaces are both ‘under-occupied’ by one electron and one other 

subspace is ‘over-occupied’ by two electrons. 

4) two subspaces are both ‘under-occupied’ by one electron and two other 

subspaces are both ‘over-occupied’ by one electron. 

As illustrated in Table 1, the different cases for a given !P,Q are distinguished by the 

corresponding values of RI
P,Q . Configurations that have !P,Q=1 are reference configurations 

and are not included in the summation over the IEC (last term in Equation 7). In addition, 

some ! -group and " -group combinations can correspond to triple and higher excited 

determinants. These IECs cannot couple with any of the reference configurations and are also 

not considered in the ORMAS-PT. 

 From each ! -group/" -group pair corresponding to an IEC label that characterizes a 

single or double excitation, ! -strings and " -strings are enumerated and combined pair-wise 

to form the proper IECs (excited determinants). These IECs are treated with the appropriate 

algorithm that corresponds to their !P,Q labels. This classification scheme provides a means 
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to directly enumerate the IECs, leading to a highly efficient algorithm for computing their 

ORMAS-PT energy contributions.  

To illustrate the above scheme, consider employing ORMAS to partition a singlet system of 

6 electrons and 12 orbitals into three 4-orbital subspaces. The minimum (maximum) 

reference occupation restrictions for the three subspaces are set to 0,0,0 (6,6,6). Thus any 

distribution of electrons among the subspaces is allowed. There are 28 possible distributions 

of the 6 electrons (seen in Table 2); the total number of electrons in subspace I for 

distribution J is indicated by NI,J. These 28 distributions correspond to a total of 48,400 

determinants. This is identical to a full CAS, so IECs are not relevant in this case. 

Next, consider the minimum (maximum) reference occupation restrictions for each 

subspace to be 2,2,2 (2,2,2). These restrictions allow for just a single distribution 

(distribution 13) while all other distributions correspond to IECs (distributions 1-12,14-28). 

Not all of the distributions that correspond to IECs will contribute to the ORMAS-PT energy. 

For example consider distribution 2 in Table 2: subspace one is ‘over-occupied’ by three 

electrons, subspace two is ‘under-occupied’ by one electron, and subspace three is ‘under-

occupied’ by two electrons. IECs corresponding to distribution 2 represent triple excitations 

since subspace one is ‘over-occupied’ by three electrons. IECs corresponding to triple 

excitations cannot couple to determinants in the ORMAS reference space, so these IECs will 

not contribute to the ORMAS-PT energy. On the other hand, consider distribution 4 in Table 

2: subspace one is ‘over-occupied’ by two electrons, subspace two is consistent with the 

reference occupation restriction, and subspace three is ‘under-occupied’ by two electrons. 

Therefore, IECs from distribution 4 correspond to double excitations from the ORMAS 

reference space. Because of this, IECs corresponding to distribution 4 will make important 
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contributions to the wavefunction and energy. The numerical IEC label given to any !-group 

P and "-group Q combination resulting in the distribution 4 is !P,Q=16 (from Equations 10-

14 or see Table 1). 

 An appropriate !P,Q  label is assigned for each ! -group P/" -group Q pair.  Once one 

knows !P,Q for a particular pair, the appropriate algorithm can be executed to directly 

determine the IEC contributions to the energy and wavefunction.  

3. Applications 

 The ORMAS-PT method has been implemented in the GAMESS (General Atomic 

and Molecular Electronic Structure System)22 suite of programs. GAMESS has been used for 

all calculations that are presented here. The ORMAS-PT method is benchmarked here 

against MRMP/MCQDPT results for four test cases, including a state averaged MCSCF 

wavefunction, singlet and higher spin states, and ionic systems. 

Potential energy surface of lithium fluoride: 

The LiF dissociation energy curves for the two lowest 1"+ states are examined to 

determine whether ORMAS-PT can properly account for the avoided crossing between the 

paths that lead to neutral and ionic products.  Starting from the LiF equilibrium geometry and 

proceeding to dissociated products, the lower energy 1"+ state before the avoided crossing 

may be described as ionic, or at least highly polar, while the higher energy state may be 

described as covalent. After the avoided crossing the lower 1"+ state becomes covalent, while 

the upper state dissociates to ionic products. In C2v symmetry, the reference CAS 

wavefunction is constructed from six electrons and nine active orbitals CAS(6,9): 

4a1,5a1,6a1,1b1,2b1,3b1,1b2,2b2,3b2. Molecular orbitals 1a1, 2a1, and 3a1 correspond to the 
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fluorine 1s and 2s and lithium 1s atomic orbitals. These orbitals are chemically inactive and 

remain in the core.  

Using ORMAS, the CAS(6,9) space is partitioned into three orbital subspaces: 

{4a1,5a1,6a1}, {1b1,2b1,3b1}, and {1b2,2b2,3b2}. The electron occupation restrictions for each 

orbital subspace are set to a minimum (maximum) of 2 (2) electrons. These occupation 

restrictions permit only two electrons to occupy any of the subspaces, irrespective of spin. 

The 6-311++G(3df,3pd)23 basis set is used for all MCQDPT and ORMAS-PT calculations. 

The orbitals are state-averaged over the two lowest energy 1!+ states. 

Figure 2 shows the two lowest 1!+ potential energy curves for ORMAS-PT and 

MCQDPT. It is important to note in Figure 2 there are actually four curves but the ORMAS-

PT and MCQDPT curves overlap making it difficult to distinguish between the two. 

Additionally, ORMAS-PT is able to account for the qualitative features of the two surfaces, 

namely the equilibrium geometry and the avoided crossing around 12-13 bohr. Figure 3 

shows the relative error of the singlet-singlet energy splitting between ORMAS-PT and 

MCQDPT. Beyond 2.9 bohr (req = 2.98 bohrs)24 there is less than 0.2 kcal/mol error between 

ORMAS-PT and MCQDPT while at shorter distances ORMAS-PT underestimates the 

energy splitting 

Potential energy surface of Si15H16 dimer buckling modes: 

 Whether or not Si(100) ground state surface dimers are buckled is an unresolved 

matter since highly correlated methods are impractical for the large surface models needed to 

eliminate edge effects. To circumvent the computational expense of large cluster models, 

small surface clusters are routinely used (Figure 4A). To investigate the geometry of the 

Si(100) surface dimers on the MRPT ground state PES, one can first calculate the MCSCF 
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vibrational modes that correspond to the buckling frequencies. The geometries are then 

perturbed along these modes while calculating MRPT single point energies. 

Geometric distortions along two buckling modes of Si15H16 were performed while the 

potential energy surface was mapped. At both the FORS/CASSCF and ORMAS-SCF level, 

the cc-pVDZ basis set25 was used to optimize Si15H16. Subsequently, the Hessian (matrix of 

second order energy derivatives) was diagonalized to determine the vibrational modes. The 

CASSCF active space includes one !/!* and one "/"* pair from each dimer leading to a total 

of 8 electrons distributed among 8 molecular orbitals (8,8).  For ORMAS-SCF, each dimer is 

given its own subspace. This results in two subspaces each containing four molecular orbitals 

(one !/!* and one "/"* pair). The reference occupation restrictions for the ORMAS-SCF 

subspaces are set to a minimum (maximum) of 4 (4) electrons. The FORS/CASSCF and 

ORMAS-SCF buckling vibration modes for Si15H16 may be seen in Figure 4. The hydrogen 

atoms are eliminated for clarity in Figures 4B and 4C. The two buckling modes are referred 

to as mode-1 and mode-2. 

 As may be seen in Figure 5, displacements along the two buckling modes show that 

the ORMAS-PT surface features agree nicely with the MRMP result that the MRPT energy 

increases as the dimers are displaced along their buckling modes. The absolute error between 

mode-1 and mode-2 between the two methods is negligible (Figure 6). The energy error 

(kcal/mol) is small even though the displaced geometries are slightly different since the 

structures are perturbed along modes and minima corresponding to ORMAS-SCF or 

FORS/CASSCF. This good agreement attests to the reliability of a properly constructed 

ORMAS and that ORMAS-PT is suitable for predicting MRMP absolute energy differences. 

Singlet-triplet and doublet-quartet splitting of OxoMn(salen) and OxoMn(salen)-1: 
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The catalyst chloro-4,4’-(1,2-ethanediyldinitrilo)bis(2-pentanonato)(2-)N,N’,O,O’)-m-

oxomanganese, referred to here as oxoMn(salen) (Figure 7), has been previously studied26 

using CAS MRPT but is reexamined here to determine the suitability of ORMAS-PT for 

transition metal complexes. Geometry optimizations on the singlet, doublet, and quartet 

species were performed using the 6-31G(d) basis set.27 The triplet MCSCF state 

spontaneously dissociates the oxygen atom upon optimization from the bound singlet 

geometry.28 Consequently, triplet calculations presented here were done at the corresponding 

optimized singlet geometries. In addition, ORMAS-PT singlet-triplet splittings were 

computed at both the CASSCF and ORMAS optimized geometries. ORMAS-PT doublet-

quartet splittings were computed at the ORMAS optimized geometries only. 

Three different active spaces are employed to treat the singlet and triplet spin states 

for oxoMn(salen). The first active space is a CAS with 12 electrons distributed among the 11 

active orbitals depicted in Figure 8. The second active space (ORMAS-3) partitions the 

active orbitals into three subspaces: {!L!L*},{!R!R*}, and {!1!1*!2!2*""*dMN} with 

electron occupations restricted to a minimum (maximum) of 2,2,8 (2,2,8), respectively. The 

final active space (ORMAS-6) partitions the active orbitals into six subspaces: 

{!L!L*},{!R!R*},{!1!1*},{!2!2*},{""*}, and {dMN} with electron occupations restricted to 

a minimum (maximum) of 2,2,2,2,2,1 (2,2,4,4,4,2), respectively.  

There are only slight modifications to two of the active subspaces for anionic doublet 

and quartet states of oxoMn(salen)-1. Here the FORS/CASSCF active space is specified to 

have 13 electrons distributed among the same 11 active orbitals (13,11). For ORMAS, the 

subspace orbitals for the anionic species are partitioned in the same way as in the neutral 

species. The difference between the neutral and anionic specifications concerns the electron 
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occupation restrictions. The electron occupation restrictions for the ORMAS-3 subspaces are 

set to a minimum and maximum of 2,2,9 (2,2,9), while the ORMAS-6 subspace restrictions 

are the same as those used for the neutral species. 

Table 3 shows the singlet-triplet energy splitting of neutral oxoMn(salen) for the three 

selected active spaces. Using the CAS energy as the benchmark, the ORMAS-3 active space 

shows the best agreement for the predicted singlet-triplet splitting. If one uses the CASSCF 

geometry to calculate the ORMAS-3 PT singlet-triplet splitting, the ORMAS-3 PT error is 

~1.8 kcal/mol. However, when the geometry is optimized with ORMAS-3, the ORMAS-3 PT 

error decreases to only ~0.1 kcal/mol. The ORMAS-6 PT predicted singlet-triplet splitting is 

in error by ~2.5 kcal/mol at the CASSCF geometry and by ~2.6 kcal/mol at the ORMAS-6 

geometry. The ORMAS-6 and OMRAS-6//CAS PT prediction that the singlet state lies lower 

in energy than the triplet state is incorrect. Since the singlet-triplet splitting is small, this error 

may imply that a more compete active space is needed. 

For the oxoMn(salen)-1 anion, the doublet-quartet splitting (Table 4) is calculated to 

be much larger than the singlet-triplet splitting in the neutral species. For the anion, both 

ORMAS-3 PT and ORMAS-6 PT predicted splittings agree with CAS MRPT to within ~0.6 

kcal/mol. The good agreement between both the neutral and anionic oxoMn(salen) species 

demonstrates the ability of ORMAS to provide a reliable reference wavefunction for the 

MRPT correction. 

For 1A oxoMn(salen), going from the full CAS MRPT treatment to ORMAS-3 

decreases both the number of determinants and CPU time29 (Table 3) by roughly half an 

order of magnitude. For the open shell systems, ORMAS-PT uses ~1-2 orders of magnitude 

fewer determinants and ~1 order of magnitude less CPU time compared to the CAS MRPT. 
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The ability to use of fewer determinants through an ORMAS decreases CPU time but more 

importantly the system memory requirements also decrease. This makes ORMAS-PT and 

efficient alternative if the CAS MRPT is prohibitive. 

Trans-polyacetylene ionization potentials: 

 ORMAS-PT vertical ionization potentials (IPs) for several trans-

polyacetylene polymers are now examined to understand the convergence of ORMAS-PT 

predicted IPs to MRMP results. The IP is calculated from the difference in absolute energies 

of the neutral and ionized species for systems composed of 2-8 ethylene subunits (Figure 9). 

The energies of the ionized species are calculated at the optimized geometries of the 

corresponding neutral species. These systems are highly conjugated, so the active space is 

constructed around the ! orbitals and electrons. 

The MRMP calculations use a CAS reference wavefunction corresponding to an 

active space of size (2n,2n) for which n is the number of ethylene subunits. For the ORMAS-

PT IPs, the active molecular orbitals are partitioned into two subspaces. With respect to the 

RHF determinant, the first subspace (space-1) corresponds to the occupied ! molecular 

orbitals while the unoccupied !* molecular orbitals comprise the second subspace (space-2). 

A maximum of two, three, or four electrons are allowed to excite from orbitals in space-1 to 

orbitals in space-2. The minimum (maximum) reference occupation restrictions for space-1 

and space-2 are set to 2n-MAX and 0 (2n and MAX) for which MAX=2,3,4 depending on 

the level of excitation. All results presented use the cc-pVTZ basis set.25 

Table 5 shows ORMAS-SCF and CASSCF IPs for trans-polyacetylene polymers of 

length n. For polymers of length n=3-8, the ORMAS-SCF IPs oscillate slightly from MAX=2 
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to 3 to 4, but these variations are very small. At the highest excitation level (MAX=4) there is 

good agreement between the ORMAS-SCF and CASSCF (maximum error ~0.02 eV). Both 

ORMAS-SCF and CASSCF under-estimate vertical IPs compared with the experimental 

values for polymers of length n=2,3,4.30 It is therefore likely that ORMAS-SCF and 

CASSCF IPs are also underestimated for the longer polymers (n=5-8). 

Table 6 shows ORMAS-PT and MRMP IPs for trans-polyacetylene polymers of 

length n. The MRMP IPs for polymers of length n=2,3,4 are in agreement with experiment. 

From this it is clear that dynamic correlation is important to reliably predict IPs for trans-

polyacetylene polymers. For polymer n=3, the progression from MAX=2,3,4 shows that the 

ORMAS-PT errors increase as MAX increases. For polymers of length n=4-8, ORMAS-PT 

predicted vertical IPs exhibit good convergence to the MRMP values. The error for these 

longer polymers range from 0.08-0.11 eV, 0.04-0.8 eV, and 0.01-0.05 eV for excitation 

levels set to MAX=2, MAX=3, and MAX=4, respectively. ORMAS-PT is an efficient 

alternative to MRMP as it uses 1-2 orders of magnitude fewer determinants. For trans-

polyacetylene polymers of length n=8 (or larger), ORMAS-PT is the only practical approach 

to compute their IPs since the active space (16,16) is prohibitive for MRMP computations. 

4. Conclusions  

A quasi-degenerate perturbation theory based on the ORMAS reference wavefunction 

has been described. For a complete active space MRPT, the effective Hamiltonian considers 

singly and doubly excited configurations, into the external orbital space of the MCSCF. For 

ORMAS-PT, the effective Hamiltonian was reformulated to also include internally excited 

configurations (IECs). A scheme was presented that directly enumerates the IECs to allow 

for efficient computation of the IECs contributions to the energy and wavefunction.  
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The ORMAS-PT method has been applied to four different systems, with the 

following key conclusions:  

1) For the two lowest 1!+ states of LiF, ORMAS-PT reproduces the MCQDPT 

avoided crossing between the two state-averaged potential energy surfaces. The energy 

splitting between the two states shows the largest error for LiF bond lengths less than the 

equilibrium distance. Starting from the LiF equilibrium bond distance and longer, the energy 

splitting showed an error less than 0.2 kcal/mol along the reaction coordinate to the 

dissociated products. 

2) ORMAS-PT correctly reproduces the MRMP potential energy surface along the 

symmetric and anti-symmetric dimer buckling modes for a Si15H16 cluster.  As the Si15H16 

cluster geometry is perturbed along the symmetric and anti-symmetric buckling modes, the 

energy increases at both the ORMAS-PT and MRMP levels of theory. This indicates the 

symmetric structure is the global minimum. 

3) ORMAS-PT was applied to the oxoMn(salen) species to examine its performance 

with transition metal complexes. ORMAS-PT reproduces the MRMP neutral singlet-triplet 

energy splitting and anionic doublet-quartet energy splitting with errors less than 0.6 

kcal/mol.  

4) ORMAS-PT reproduces the MRMP ionization potentials for trans-polyacetylene 

polymers of various lengths. For the longer polymers, ORMAS-PT was shown to 

systematically converge to the MRMP results as the number of configurations used to 

construct the reference wavefunctions is systematically increased. 

 ORMAS-PT is an efficient approximation to the MRMP/MCQDPT level of theory. 

ORMAS-PT is able to attain a high level accuracy and reduce the number of determinants 
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required for a typical MRMP/MCQDPT by 1-2 orders of magnitude. It follows that ORMAS-

PT reduces the system memory needed to handle large active spaces. The highly efficient 

ORMAS-PT approach opens the door for MRPT treatments of highly correlated systems that 

are otherwise computationally prohibited by CASSCF/FORS references.  
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Figure 1: Schematic representation of the ORMAS method. The full valence space orbitals 
are partitioned into S subspaces each containing N,M,…,O orbitals, respectively. Minimum 
and Maximum electron occupation restrictions are assigned to each subspace to determine 
which determinants from the original full valance space are used to construct the ORMAS 
Hamiltonian.  
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Figure 2:  Potential energy curve (hartree) for the dissociation of LiF. The ! and ! 
designate the two lowest 1!+ states. 
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Figure 3:  ORMAS-PT relative error (kcal/mol) for the energy splitting for the two lowest 
1!+ states compared to MCQDPT. 
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Figure 4: A) Optimized structure of Si15H16. B) buckling mode-1, C) buckling mode-2. For 
clarity, the hydrogen atoms in B and C been removed. The buckling mode frequencies in B 
and C correspond to those calculated with CASSCF and ORMAS(in parentheses).  
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Figure 5: MRPT potential energy curves (hartree) for the displacement Si15H16 from the 
optimized geometries of FORS/CASSCF and ORMAS along buckling mode 1 (!,") and 
mode 2 (#,!). Here the filled markers refer the MRMP energy while the unfilled markers 
refer to ORMAS-PT. 
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Figure 6: Relative error (kcal/mol) between mode 1 (!) and mode 2 (!) with respect to the 
minimum energy structure for ORMAS-PT compared to MRMP. 
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Figure 7: OxoMn(salen) 
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Figure 8: OxoMn(salen) CASSCF/6-31G* MCSCF optimized orbitals. 
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Figure 9: Schematic of trans-polyacetylene of length n. 
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Table 1: Classification types of internally excited configurations (IEC). Type 1 IECs 
correspond to reference determinants. RI

P,Q specifies how subspace I is ‘over-
occupied’/‘under-occupied’ upon combining !-group P with "-group Q (a zero integer 
means that subspace is consistent with the reference occupation restriction). 

Electron ‘over-occupations’/‘under-occupations’ in subspace:  
IEC type !PQ RI

P,Q  RI
P,Q  RI

P,Q  RI
P,Q  RI

P,Q  RI
P,Q  …RI

P,Q  RI
P,Q  

1a 0 0 0 0 0 0…0 0 
-3 -1 0 0 0 0 0…0 0 
3 1 0 0 0 0 0…0 0 
4 1 -1 0 0 0 0…0 0 
-6 -2 0 0 0 0 0…0 0 
-6 -1 -1 0 0 0 0…0 0 
6 2 0 0 0 0 0…0 0 
6 1 1 0 0 0 0…0 0 
-9 -2 1 0 0 0 0…0 0 
-9 -1 -1 1 0 0 0…0 0 
9 -1 2 0 0 0 0…0 0 
9 -1 1 1 0 0 0…0 0 

16 -2 2 0 0 0 0…0 0 
16 -2 1 1 0 0 0…0 0 
16 -1 -1 2 0 0 0…0 0 
16 -1 -1 1 1 0 0…0 0 
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Table 2: All possible distributions of 6 electrons among three four-orbital subspaces. 
Distribution 13 is the only allowable distribution of electrons with the minimum (maximum) 
electron occupation restrictions of 2 (2) for each subspace. NI,J is the total number of 
electrons assigned to subspace I from distribution J. 

Distribution (J) N1,J  N2,J  N3,J  # Determinants 

1 6 0 0 16 
2 5 1 0 192 
3 5 0 1 192 
4 4 2 0 768 
5 4 1 1 1664 
6 4 0 2 768 
7 3 3 0 1184 
8 3 2 1 4416 
9 3 1 2 4416 

10 3 0 3 1184 
11 2 4 0 768 
12 2 3 1 4416 
13 2 2 2 7552 
14 2 1 3 4416 
15 2 0 4 768 
16 1 5 0 192 
17 1 4 1 1664 
18 1 3 2 4416 
19 1 2 3 4416 
20 1 1 4 1664 
21 1 0 5 192 
22 0 6 0 16 
23 0 5 1 192 
24 0 4 2 768 
25 0 3 3 1184 
26 0 2 4 768 
27 0 1 5 192 
28 0 0 6 16 
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Table 5: MCSCF vertical ionization potentials (eV) and 
experimental ionization potentials for trans-polyacetylene polymers 
of length n subunits. 

ORMAS-SCF Ethylene 
subunits CAS size 

Max = 2 Max = 3 Max = 4 
CASSCF Exp. 

2 (4,4) 8.44 - - 8.47 9.09 
3 (6,6) 7.71 7.72 7.78 7.78 8.29-8.45 
4 (8,8) 7.27 7.22 7.34 7.35 7.8-8.1 
5 (10,10) 6.97 6.89 7.06 7.07 - 
6 (12,12) 6.77 6.66 6.86 6.87 - 
7 (14,14) 6.62 6.48 6.71 6.73 - 
8 (16,16) 6.51 6.35 6.60 - - 
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Table 6: MRPT vertical ionization potentials (eV) and 
experimental ionization potentials for trans-polyacetylene 
polymers of length n subunits. 

ORMAS-PT Ethylene 
subunits CAS size 

Max = 2 Max = 3 Max = 4 
MRMP Exp. 

2 (4,4) 9.27 - - 9.11 9.09 
3 (6,6) 8.36 8.59 8.62 8.34 8.29-8.45 
4 (8,8) 7.92 7.57 7.86 7.88 7.8-8.1 
5 (10,10) 7.65 7.62 7.57 7.58 - 
6 (12,12) 7.50 7.47 7.36 7.39 - 
7 (14,14) 7.41 7.36 7.22 7.27 - 
8 (16,16) 7.37 7.30 7.13 - - 
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CHAPTER 4. THE DIFFUSION OF GALLIUM ADATOMS ON THE 
Si(100)-2X1 RECONSTRUCTED SURFACE: AN MCSCF STUDY OF 

MOLECULAR SURFACE CLUSTERS 
 

A paper to be submitted to The Journal of Physical Chemistry 
 

Luke Roskop, James W. Evans, and Mark S. Gordon 

 

Ab initio electronic structure theory was used to model systems that depict Ga and Ga2 

deposition on the Si(100)-2!1 reconstructed surface. A Si15H16 molecular cluster was used to 

model the Si(100)-2!1 reconstructed surface while a larger Si199H92 cluster was used to 

represent the role of the bulk crystal in the diffusion process. Since the Si(100)-2!1 

reconstructed surface is comprised of surface dimers that exhibit a significant amount of 

diradical character, multi-configuration self-consistent field (MCSCF) methodology was 

used to treat the relevant potential energy surfaces. Hessian calculations were used to 

characterize all structures while intrinsic reaction coordinate (minimum energy path) 

computations were performed to validate the potential energy surface. Dynamic correlation 

effects were computed at MCSCF optimized structures by multi-reference second-order 

perturbation theory. Results from the two cluster models were compared to understand the 

need for including bulk effects in the surface model. 

1. Introduction 

 The deposition of group III metal adatoms onto the Si(100)-2!1 reconstructed crystal 

surface leads to the formation of 1-D islands.1,2,3,4,5 These 1-D islands, which are 

distinguished as atomic wires, have the potential to serve as interconnects between future 

nanodevices that are fixed to the Si(100)-2!1 reconstructed surface. How group III metal 
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adatoms self-assemble into atomic wires is fundamentally a question of surface diffusion. 

Whether metal adatoms diffuse freely or if their diffusion is mediated by other metal adatoms 

is an important consideration. An appreciation for the diffusion of metal adatoms on the 

Si(100)-2!1 reconstructed surface is enhanced if one considers the origin of the high surface 

reactivity. 

The Si(100)-2!1 reconstructed surface has a morphology that is dominated by rows 

of surface dimers. These surface dimers are comprised of two silicon atoms, each of which 

has an attached dangling bond that contains a single electron. As a result, each surface dimer 

may be thought of as a diradical. The diradicaloid nature of the dimers contributes to the high 

reactivity of the Si(100)-2!1 reconstructed surface (referred to henceforth as the Si(100) 

surface). The diradical nature of these surface dimers undoubtedly plays a central role in the 

diffusion process. In fact group III metal adatoms prefer adsorption sites that maximize the 

interaction with multiple dangling dimer bonds. In what is referred to as the parallel dimer 

model, rows of metal atoms (atomic wires) form in rows that are perpendicular to the dimer 

rows. This arrangement maximizes the interaction between each metal adatom and two 

dangling dimer bonds that originate from adjacent dimers in the same dimer row.1,6,7,8,9,10 At 

low coverage it is understood that no two rows of metal adatoms lie adjacent to one another. 

This may be the result of an effective repulsion between the atomic wires.11 

In effort to understand the surface mediated-diffusion of Ga on the Si(100)-C(2x4) 

reconstructed surface, previous studies have identified several adsorption sites. A Car-

Parrinello study by Takeuchi12 located two absorption sites referred to as a twofold and a 
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threefold site (Figure 1: A, B). Takeuchi predicted that the twofold site (1B) lies 0.17 eV (3.9 

kcal/mol) lower in energy than the threefold site (1A).  

More recently, Albao, Hsu, Putungan, and Chuang (AHPC)13 examined the diffusion 

of Ga on a periodic slab model that represented the Si(100)-C(2x4) reconstructed surface. 

Within the generalized gradient approximation (GGA) to density functional theory (DFT), 

AHPC located five structures (Figure 1: B, C, D, Eu, Ed). Two similar structures were 

reported for 1E in which the two Si atoms that closely interact with the Ga adatom (Si2 and 

Si7) are buckled upward (1Eu) or downward (1Ed). AHPC reported that 1C and 1Eu are 

saddle points, 1D and 1-Ed are metastable, and 1-B is the global minimum energy structure. 

Relative to the 1B global minimum, the stability of the remaining structures is as follows: 1B 

> 1C > 1D > 1Ed > 1Eu. Unlike the report from Takeuchi, AHPC did not find a threefold 

structure (1A). AHPC predict the diffusion barriers for Ga adatom parallel and perpendicular 

to the dimer row to be 6.5 and 7.7 kcal/mol, respectively. 

Reliable models of complex chemical behavior must employ a level of theory that can 

accurately treat the potential energy surface (PES) for the processes under consideration. 

Since multi-reference behavior is exhibited by transition state structures and the Si(100) 

surface dimers, an accurate chemical model must have the capability to treat this behavior. 

Multi-configuration self-consistent field (MCSCF) methods are specifically used to treat 

chemical systems that exhibit multi-reference (i.e., diradical) behavior. MCSCF methods also 

have the capability to measure the multi-reference character of their constructed 

wavefunctions.  

From the MCSCF one-particle density matrix, a set of natural orbitals and natural 

orbital occupation numbers (NOONs) can be generated.14 NOON values provide a 



www.manaraa.com

 83 

convenient metric to analyze the diradical character of a system. Diradical character is 

characterized by NOON values that significantly deviate from the standard restricted open-

shell Hartree-Fock (ROHF) occupation numbers of zero, one, or two.15 For example, 

consider the !* natural orbital of the Si9H12 cluster, which is a minimalist representation of a 

single Si(100) surface dimer (Figure 2). The NOON value for this anti-bonding orbital 

reveals that it is occupied by approximately one-third of an electron, which is a significant 

amount of multi-reference character. On the other hand the !* natural orbital has a NOON 

value of ~0.02, which indicates that a negligible amount of multi-reference character 

originates from this natural orbital. 

A reliable surface model should also incorporate subsurface-effects from the bulk 

crystal as they can affect the PES. One generally attempts to use a model that is physically 

large enough to avoid edge effects of small molecular clusters, but remain computationally 

practical within the chosen level of theory. Thus, the physical size of the employed model is 

a practical consideration as bulk effects are introduced through it. 

There are essentially two approaches that are commonly employed to represent 

crystal surfaces. The first approach uses molecular clusters that best mimic the bare surface. 

Their inherent simplicity and ability to be treated with standard computational techniques 

have resulted in their widespread use. The reliability of molecular clusters is questionable 

since, to some degree, they manifest spurious edge effects. An advantage of clusters is that 

the use of very accurate electronic structure methods is feasible. To circumvent the edge 

effects seen in molecular clusters, slab models are commonly used since they incorporate 

periodic boundary conditions, thereby avoiding undesirable edge effects.16 Slab models are 
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typically used with single reference methods like GGA DFT that do no always provide 

results of sufficient accuracy. 

One compromise between simple cluster models and slab models with periodic 

boundary conditions is the embedded cluster model. One such approach, the surface 

integrated molecular orbital molecular mechanics (SIMOMM) method, is employed here.17 

The SIMOMM method uses both quantum mechanics (QM) and molecular mechanics (MM), 

which allows for the treatment of large surface clusters that can be computationally 

impractical with QM alone. SIMOMM ameliorates the edge effects of a QM cluster by 

embedding it into a much larger cluster that is treated with MM. The larger MM molecular 

cluster compensates for the edge effects encountered within the QM molecular cluster. As a 

result the QM region of the QM/MM cluster better resembles the pristine surface than if one 

were to treat the QM cluster by itself. An important advantage of embedded cluster models 

like the SIMOMM method is that the QM component can use any available quantum 

chemistry method, ranging from GGA DFT to multi-reference techniques. 

This paper examines the diffusion of Ga and Ga2 on Si(100) surface clusters. Various 

minima and transition state structures are located, which are subsequently connected to map 

out the PES. In addition, QM and SIMOMM QM/MM results are compared to understand the 

extent to which the bulk crystal affects the PES. 

2. Computational Methods 

 All results reported here have been obtained from either QM or hybrid QM/MM 

methodology. The QM cluster, Si15H16 (Figure 3A), is constructed with the minimum number 

of atoms that can adequately represent two Si(100) surface dimers. Bulk-effects are 

considered using a larger QM/MM cluster, Si199H92 (Figure 3B). The QM/MM cluster 
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represents a region of the Si(100) surface that is 11 layers deep and contains 12 surface 

dimers. The reactive region of the QM/MM cluster is the same two-dimer (Si15H16) QM 

cluster seen in Figure 3A, which is represented by the red atoms in Figure 3B. The QM/MM 

model is constructed by the SIMOMM method,17 which mechanically embeds the Si15H16 

QM cluster into the larger Si199H92 QM/MM cluster. The MM component of the QM/MM 

cluster is optimized using the MM318 force field parameters in the Tinker program.19 To save 

space, all structures that correspond to the Si199H92 QM/MM cluster are represented by the 

embedded QM region (Si15H16).  

The complete active space self-consistent field (CASSCF)20,21 method is used to treat 

all QM atoms. For structures that correspond to the diffusion of a single Ga adatom, a 

complete active space (CAS) is constructed with the !, ", "#, !# orbitals from each Si-Si 

dimer and the 3s, 3px, 3py, 3pz orbitals from the Ga adatom. This 11 electrons in 12 orbitals 

active space is referred to as a CAS(11,12) active space. If this active space were expanded to 

accommodate orbitals and electrons from an additional Ga adatom, the resultant active space 

would be computationally impractical. Therefore some of the orbitals in the would-be active 

space must be excluded. Consider the diffusion of a single Ga adatom: when the Si-Si dimer 

bond is stretched farthest on the PES, the NOON values of the !/!# orbitals centered on the 

surface dimers are ~1.98/~0.02. These NOON values indicate that a negligible amount of 

multi-reference character originates from the !/!#  orbitals. Because of this, the !/!# orbitals 

were excluded from the larger active space. For the Ga2 calculations, a CAS was constructed 

with the  ", "#  orbitals from each Si-Si dimer and the 3s, 3px, 3py, 3pz orbitals from each Ga 

adatom. This results in a CAS(10,12) active space. 
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All CASSCF minima and transition state structures were confirmed as stationary 

points by diagonalizing the Hessian (matrix of second order energy derivatives). Transition 

states were connected to their respective reactants and products by computing the intrinsic 

reaction coordinate (IRC),22 also referred to as the minimum energy path (MEP). All IRC 

calculations were performed using the GS2 algorithm23 with a range of step sizes from 0.05-

0.3 amu1/2-bohr. Dynamic correlation effects were computed by second-order multi-reference 

Møller-Plesset (MRMP2) perturbation theory24,25 at the final CASSCF geometries 

(MRMP2//CASSCF). The 6-31G(d) all electron basis set26 was used for all Si and Ga atoms. 

The General Atomic Molecular Electronic Structure System (GAMESS)27 was used for all 

QM calculations while the GAMESS/Tinker interface was used for all SIMOMM 

computations. It is important to note the model systems used here cannot determine diffusion 

barriers that correspond to the migration of Ga adatom between adjacent dimer rows. 

3. Results and Discussion  

3A. Ga adsorption on Si(100) 

Figures 4 and 5 display doublet and quartet potential energy surfaces (PESs) that 

depict absorption sites for Ga adatom on the Si15H16 QM and Si199H92 QM/MM molecular 

clusters, respectively. Results for the smaller QM cluster are presented first. Three local 

minima (LM: on-top, threefold, pseudo off-center) and five transition states (TS) are found 

on the QM doublet surface at the CASSCF level of theory. All energies in Figure 4 are 

relative to the doublet on-top structure. MRMP2//CASSCF energy corrections (in 

parentheses) indicate that the threefold site is the global minimum energy structure. The 

MRMP2 single point energies suggest that the addition of dynamic correlation modifies the 

nature of the doublet potential energy surface. 
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The off-center adsorption site (Figure 1B) is similar to the structure found by 

Takeuchi and AHPC. Takeuchi and AHPC report that the off-center adsorption site is a 

minimum; however, the CASSCF off-center structure is a transition state. This discrepancy 

may be a consequence of the first principles methodology used by Takeuchi and AHPC, 

which accounted for dynamic correlation effects. The off-center structure may be a 

minimum on the MRMP2 surface as MRMP2//CASSCF relative energies predict that the off-

center structure is 0.1 kcal/mol lower in energy than the on-top structure. 

The threefold absorption site (Figure 1A) found in this work is similar to the 

structure found by Takeuchi. Takeuchi reports the off-center structure is 3.9 kcal/mol lower 

in energy than the threefold structure. In contrast, MRMP2//CASSCF indicates the 

threefold site is 6.7 kcal/mol lower in energy than the off-center site.  

The on-dimer adsorption site (Figure 1C) is similar to the structure found by AHPC. 

AHPC predicted the off-center site to be lower in energy than the on-dimer site by 6.5 

kcal/mol, whereas MRMP2//CASSCF finds that the on-dimer site is lower in energy than the 

off-center site by 3.4 kcal/mol. These discrepancies are most likely related to the inability of 

single determinant GGA DFT methods to capture the significant diradical character of many 

of the species considered here.   

Two paths on the QM doublet surface (Figure 4) describe the migration of a Ga 

adatom from one surface dimer to the other. While the minimum energy paths were 

determined at the CASSCF level of theory, the discussion here will refer to the MRMP2 

single point energies, since they are more reliable. Both paths begin at an on-top structure; 

pass through pseudo-off-center and off-center structures; and ultimately end at an adjacent 

on-top structure. The difference between the two paths is the route from the on-top structure 
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to the pseudo-off-center structure. The lower-energy path proceeds through an on-

top!pseudo-off-center transition state to a pseudo-off-center structure. The higher-energy 

path is a two-step process in which the Ga adatom passes through an on-top!threefold 

transition state to a threefold structure; then the Ga adatom proceeds through a 

threefold!pseudo-off-center transition state to the pseudo-off-center structure. Relative to 

the on-top structure, there appears to be no net energy barrier for the lower-energy path, 

while the higher-energy path encounters a net 5.7 kcal/mol MRMP2 energy barrier.  

The Ga adatom also diffuses between two on-top sites located at either side of the 

same dimer (see Fig. 4). These two sites are connected by an on-dimer structure, which is 

found to be a transition state at the CASSCF level of theory. However, the 

MRMP2//CASSCF relative energies indicate that the on-dimer structure is 3.5 kcal/mol 

lower in energy than the on-top (CASSCF) local minimum it is connected to. This suggests 

that at the MRMP2 level of theory, the on-dimer structure may not be a transition state.  

The MRMP2//CASSCF doublet potential energy surface (PES) is much flatter than is 

the corresponding CASSCF PES, suggesting a facile diffusion process. The doublet on-top 

site is the highest energy structure a Ga adatom will encounter for surface diffusion along a 

row of surface dimers. On the lower-energy doublet path, all species are within a 3.5 

kcal/mol range, while on the higher energy path, only the threefold and the threefold !  

pseudo-off-center TS are outside this energy range. 

Natural orbital occupation numbers (NOONs) are reported in Table 1 for all QM 

structures. The NOONs for a single determinant wavefunction should all be very close to 

integers. For doublet and quartet states, each NOON should have a value of 2 or 1 for 

occupied orbitals and 0 for virtual orbitals. Clearly, many NOON values deviate significantly 
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from integer values, indicating significant diradical character, and therefore significant multi-

reference character in the corresponding wavefunctions. The threefold structure exhibits the 

least amount of diradical character, with NOONs of 1.90, 1.00, and 0.10. Interestingly, the 

lowest energy MRMP2 structures are those for which the Ga adatom maximizes its 

interaction with more than one dangling dimer bond, thereby decreasing the diradical (multi-

reference) character. This is also apparent from the PT energy corrections that are listed in 

Table 1. 

Two minima (on-top and off-center) and two transition states are found on the QM 

(CASSCF) quartet PES (Figure 4). Relative to the energy of the doublet on-top structure, 

MRMP2//CASSCF relative energies predict that the off-center structure is the quartet global 

minimum energy structure. The MRMP2 relative energies of the quartet on-dimer, on-

top!pseudo-off-center TS, and off-center structures are lowered relative to the CASSCF 

energies. These three structures correspond to arrangements in which the Ga adatom interacts 

with two dangling dimer bonds. The relative energy of the on-top structure, which interacts 

with just a single dangling dimer bond, increases when dynamic correlation is introduced.  

NOON values (Table 1) indicate that the CASSCF structures on the quartet surface 

are tri-radicals, with three NOON=1.0. The quartet NOON values do not significantly deviate 

from the restricted open shell Hartree-Fock occupation numbers (two, one, zero). This 

indicates that a multi-reference treatment is less critical for the quartet structures.  

Now, consider the QM/MM SIMOMM clusters. Figure 5 displays the doublet and 

quartet PESs that depict adsorption sites of a single Ga adatom on the Si199H92 QM/MM 

cluster (Figure 2B). Two minima and one transition state are found on the doublet surface. 

Attempts to locate a threefold structure have been unsuccessful; however, it may exist on the 
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MRMP2 surface since MRMP2//CASSCF relative energies indicate that it is the global 

minimum for the smaller QM cluster (Figure 4).  

The CASSCF on-dimer structure is a minimum on the QM/MM doublet surface. 

This observation is in contrast with the QM-only model in which the CASSCF on-dimer 

structure is a transition state. Attempts to locate a QM/MM on-dimer!on-top transition 

state were unsuccessful. The difficulty associated with the location of an on-dimer!on-top 

transition state is probably the result of a small energy barrier (< 0.1 kcal/mol) relative to the 

on-dimer structure. Since MRMP2//CASSCF relative energies indicate that the on-dimer 

site is the global minimum energy structure, it is likely that the on-dimer!on-top TS 

structure will have a relative energy that is similar to that of the on-dimer site. 

There is a 0.7 kcal/mol energy barrier that connects on-top sites on adjacent surface 

dimers. This is in contrast to the QM-only cluster results, since the order of the 

MRMP2//CASSCF relative energies between the on-top and off-center structures is 

switched. However this is not unreasonable since the energy difference between the on-top 

and off-center structures in the QM and QM/MM models is small (!0.7 kcal/mol). It is clear 

that both the QM and QM/MM doublet PESs are flat in the region between the on-top and 

off-center structures, which indicates that the Ga adatom readily diffuses along the dimer 

rows. 

Two minima and two transition states are reported on the QM/MM quartet surface 

(Figure 5). Attempts to locate an on-dimer!on-top TS on this PES have also been 

unsuccessful. MRMP2//CASSCF relative energies indicate that the off-center adsorption site 

is the global minimum energy structure. Relative to the energy of the on-top site, the relative 

energies of those structures that associate Ga adatom with more than one dangling dimer 
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bond are lowered when dynamic correlation is introduced, while the relative energy of the 

on-top structure associated with one dangling dimer bond increases. The QM/MM NOON 

values (Table 1) for all structures indicate little need for a multi-reference treatment. 

3B. Ga2 on Si(100) 

This section is split into three subsections: First, the diffusion of two Ga adatoms that 

are not bonded to one another is considered. Next, the formation of Ga2 dimer in examined. 

The last subsection examines the rotation of the Ga2 dimer. Each subsection presents QM 

cluster results followed by the SIMOMM QM/MM cluster results. The red numbers in Figure 

6 are used to identify structures that involve two Ga adatoms. These numbers specify the 

position of each Ga adatom relative to the Si15H16 QM cluster. For example, the 5-6 label 

(see Figure 7) refers to the local minimum structure in which one Ga adatom is at the ‘5’ 

position and another is at the ‘6’ position. If the label contains a ‘!’ then the structure is a 

transition state. For example, the 5-2!5-1 label refers to the transition state structure that 

connects local minima 5-2 and 5-1. 

Potential Energy Surface for adsorption. Figure 7 displays the stationary points on 

the singlet and triplet potential energy surfaces for adsorption of two separated Ga adatoms 

on the Si15H16 QM cluster. These PESs describe the diffusion of one Ga adatom while the 

other Ga adatom is fixed at the ‘5’ position. Four minima and three transition states were 

found on both the singlet and triplet PESs. All energies in Figure 7 are reported relative to the 

singlet 5-6 structure. 

There are significant differences in the CASSCF and MRMP2//CASSCF potential 

energy surfaces. On the former, the global minimum is the 5-6 structure, but the relative 

energy of this diradicaloid species is likely to increase when dynamic correlation is 
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introduced, and this is indeed the case. Interestingly, the MRMP2//CASSCF global minimum 

is the 5-6!5-4 structure, which is a TS on the CASSCF PES. Relative to the 5-6!5-4 

structure, the singlet surface becomes increasingly repulsive (up to 17.6 kcal/mol) as the 

system evolves to the 5-1 structure. The high relative energies of most of the structures along 

this reaction path correlate with an increase in diradical character (Table 2). The high relative 

energies of the 5-2 (16.7 kcal/mol), 5-2!5-1 (14.4 kcal/mol), and 5-1 (17.6 kcal/mol) 

structures indicate that the two Ga adatoms prefer arrangements that maximize their 

interaction with the same surface dimer (or with each other).  

Except for the 5-6 structure itself, the impact of dynamic correlation on the triplet 

PES is much less than that on the singlet PES. The MRMP2//CASSCF relative energies 

indicate that the 5-4 structure is the triplet global minimum. Both the CASSCF and 

MRMP2//CASSCF levels of theory predict that the singlet and triplet PESs are essentially 

degenerate at the 5-2, 5-2!5-1 TS, and 5-1 structures. The singlet and triplet NOON values 

(Table 2) indicate that all three species are nearly pure diradicals on the singlet surface and 

pure diradicals on the triplet PES. 

Now consider the QM/MM cluster. Figure 8 displays singlet and triplet surfaces that 

depict absorption sites of two separated Ga adatoms on the QM/MM cluster. All energies in 

Figure 8 are reported relative to the singlet 5-6 structure. Unlike the Si15H16 QM cluster, 

attempts to locate both a 5-6!5-4 and 5-4 structure on the singlet QM/MM surface have 

been unsuccessful. It is possible that bulk effects influence the CASSCF surface such that it 

is very flat in this region. MRMP2//CASSCF energies indicate that the 5-6 structure is the 

global minimum. This agrees with the notion that the more stable structures correspond to 

geometrical arrangements in which Ga adatoms interact with the same surface dimer.  
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Four minima and three transition states are found on the triplet QM/MM surface. 

These transition states and minima closely correspond with those found for the QM cluster. 

MRMP2//CASSCF energies indicate the 5-4 structure is the triplet global minimum. The 

stability of this structure may be related to the 5-4 arrangement of Ga adatoms such that they 

optimally interact with three of the four dangling dimer bonds. 

Ga2 dimer formation. Figure 9 displays singlet and triplet CASSCF surfaces that 

depict the formation of the Ga2 dimer on the QM cluster. Whenever a structure corresponds 

to a situation in which the Ga adatoms are considered to be bonded to each other, a “B” is 

added to the label. For example, 5-4B (see Figure 9) indicates that the adatoms at the 4 and 5 

positions are bonded to one another. All energies in Figure 9 are relative to the singlet 5-6 

structure. 

The singlet QM surface illustrates that the Ga adatoms in the 5-4 structure can form a 

Ga2 dimer via the 5-4!5-4B transition state structure. Relative to the 5-4 structure, the 5-4B 

structure is lower in energy by 25.6 kcal/mol. Once dynamic correlation is introduced via 

MRMP2 calculations, there appears to be no barrier that prevents the formation of the Ga2 

dimer. This suggests that the two Ga adatoms will spontaneously form Ga2 dimer when they 

approach each other on the Si(100) surface. NOON values (Table 2) show that the 5-4B 

structure has little multi-reference character, which is consistent with the large energy 

lowering upon the Ga-Ga bond formation.  

The triplet QM surface is much flatter than the singlet surface, demonstrating little 

energetic preference for the bonded vs. nonbonded structures. For example, the 5-4B triplet 

species is less than 10 kcal/mol lower in energy than 5-4, and there is a small barrier 

separating the two species. The triplet surface also has a second route, in which the two Ga 
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adatoms diffuse from the 5-4 species to the 3-4 structure. This pathway has no intervening 

MRMP2//CASSCF energy barrier. At this level of theory, the 3-4 structure is higher in 

energy than the 5-4B structure by just 0.3 kcal/mol. 

Figure 10 displays singlet and triplet CASSCF surfaces that depict the formation of 

Ga2 dimer on the QM/MM cluster. All energies in Figure 10 are reported relative to the 

singlet 5-6 structure. On the QM/MM singlet surface, the 5-4B structure is formed from the 

5-6 structure via the 5-6!5-4B transition state. Both the QM and QM/MM pathways form a 

Ga2 dimer without an energy barrier. The 5-4B structure is favored over the 5-6 structure by 

11.1 kcal/mol. As for the QM-only species, the 5-4B structure has little multi-reference 

character, as shown in Table 2. The MRMP2//CASSCF energies indicate that the most 

favorable arrangement of the Ga adatoms occurs when: 1) Ga adatoms are dimerized and 2) 

the Ga2 dimer maximizes its interaction with the dangling dimer bonds. 

 The triplet QM/MM surface is similar to the triplet QM-only surface, showing little 

preference for bonded vs. diradicaloid species. From the 5-4 local minimum, the Ga adatoms 

dimerize to form the 5-4B structure (Ga2 dimer) without a MRMP2//CASSCF energy barrier. 

The Ga adatoms can also form triplet 3-4 without an energy barrier. The lowest energy 

structure on the triplet surface is predicted to be 5-4B (-2.3 kcal/mol), but this structure is 

only 1 kcal/mol lower in energy than the 3-4 structure.  

Ga2 dimer rotation. Figure 11 displays the singlet and triplet CASSCF potential 

energy surfaces that depict the rotation of a Ga2 dimer on the QM cluster. These surfaces 

examine the rotational mobility of a Ga2 dimer on the Si(100) surface. All energies in Figure 

11 are reported relative to the singlet 5-6 structure. 
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The 5-4B structure is the singlet global minimum. From 5-4B the Ga2 dimer can 

rotate into either the 3-4B or 7-9B structures. The MRMP2//CASSCF energies increase by 

about 5 kcal/mol as the Ga2 dimer rotates from the 5-4B structure through the 5-4B!3-4B 

transition state to the 3-4B structure. Although a QM transition state that connects the 5-4B 

structure to the 7-9B structure has yet to be found, it may exist as this transition state was 

found on the QM/MM CASSCF surface. Singlet NOON values, summarized in Table 2, 

demonstrate that the structures that contain the Ga2 dimer have less diradical character than 

do structures that have separated Ga adatoms, and therefore these Ga-Ga bonded species 

have lower MRMP2//CASSCF energies. On the triplet PES, starting from 5-4B, the Ga2 

dimer can rotate to form the 5-7B structure, with an energy increase of about 12.5 kcal/mol. 

No other stationary points have been found on the triplet PES. 

Figure 12 displays the singlet and triplet CASSCF QM/MM PESs for the rotation of 

the Ga2 dimer. All energies in Figure 12 are reported relative to the singlet 5-6 structure. 

From the 5-4B structure, the Ga2 dimer can rotate to the singlet global minimum 3-4B 

structure without a MRMP2//CASSCF energy barrier. The 3-4B structure closely resembles 

the parallel dimer model, consistent with experimental observations. Alternatively, the Ga2 

dimer in the 5-4B structure can also rotate to the 7-9B structure, but this rotation must 

surmount a 10.5 kcal/mol MRMP2//CASSCF energy barrier.  

As noted above for the QM-only species, and for similar reasons, the 7-9B and 3-4B 

NOON values (Table 2) demonstrate little multi-reference character. The triplet QM/MM 

surface is very similar to the triplet QM-only surface. As the Ga2 dimer rotates from the 5-4B 

structure to the 5-7B structure the energy of the system increases. 

5. Comparison of QM and QM/MM treatments.  
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 Table 3 displays differences in relative energies between doublet and quartet 

structures that are common to both the QM-only and QM/MM models. The largest relative 

MRMP2//CASSCF energy difference for the doublet (quartet) structures is -0.8 kcal/mol (-

2.1 kcal/mol). The mean absolute differences (MAD) in the CASSCF and 

MRMP2//CASSCF relative energies are 1.3 kcal/mol and 0.8 kcal/mol, respectively. These 

small energy differences suggest that adding bulk via the MM atoms has only a modest effect 

on the relative energies. The largest energy difference occurs for the off-center structure, due 

in part to the more rigid QM/MM surface. In the QM off-center structure, the Si15H16 cluster 

can collapse to allow for a more favorable interaction between the dangling dimer bonds at 

each Si(100) surface dimer and the Ga adatom. 

 Table 4 displays differences in relative energies between singlet and triplet structures 

that are common to QM and QM/MM models. The largest relative MRMP2//CASSCF 

energy difference for the singlet (triplet) structures is -15.2 kcal/mol (7.3 kcal/mol). The 

mean absolute difference in both the CASSCF and MRMP2//CASSCF relative energies is 

2.3 kcal/mol. The largest energy difference occurs for structure 5-4B.  

The QM/MM model predicts the 3-4B structure to be the global minimum energy 

structure, which corresponds to the parallel dimer model, whereas the QM model predicts the 

5-4B structure to be the global minimum energy structure. This suggests that bulk effects are 

necessary to stabilize the 3-4B structure and to bring the calculations into agreement with 

experimental observations. 

Figure 13 compares the QM part of the QM and QM/MM singlet 5-4B structures. The 

QM-only structure appears to be twisted. The bulk support structure (MM region) in the 
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QM/MM model corrects the QM region and the surface cluster looks more symmetric. This 

demonstrates the importance of incorporating bulk effects in the surface model. 

5. Conclusions 

Ab initio electronic structure calculations were performed to develop an 

understanding of the diffusion of Ga and Ga2 on the Si(100)-2!1 reconstructed surface. 

These processes were modeled using QM (Si15H16) and SIMOMM QM/MM (Si199H92) 

molecular clusters. The diffusion of Ga adatoms and the Ga2 dimer along the Si(100) dimer 

row was investigated. 

Structures similar to the ones found by Takeuchi and AHPC were observed in this 

work, with differences primarily in the energy ordering among the structures. Both Takeuchi 

and AHPC reported the off-center structure as a minimum energy structure, but in the present 

work the off-center structure is found to be a transition state by both the QM and QM/MM 

cluster models. Both Takeuchi and AHPC predicted that the off-center structure is the global 

minimum; here the three-fold structure is found to be the QM minimum while the on-dimer 

structure is predicted to be the QM/MM minimum. AHPC predict that the on-dimer structure 

is a transition state, which agrees with the QM cluster model used here. On the other hand, 

the QM/MM cluster model predicts the on-dimer site to be a minimum energy structure. In 

any event, the low MRMP2 relative energies from both the QM and QM/MM models would 

seem to indicate that the on-dimer site is a minimum on the potential energy surface. 

 The order of stability for structures that are common to both QM and QM/MM 

models is inconsistent. QM/MM energies predict that the 3-4B structure is the singlet global 

minimum. No QM/MM energy barriers were found for structures that lead to the 3-4B 

structure. This indicates Ga adatoms self-assemble into atomic wires, consistent with 
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experimental observations. On the other hand, MRMP2//CASSCF relative energies indicate 

an energy penalty in the QM-only cluster as the Ga2 dimer is rotated from the 5-4B position 

to the 3-4B position. This demonstrates the need for surface models that consider bulk 

effects.  

The doublet/quartet surfaces that depict Ga adatom diffusion indicate the QM-only 

on-dimer sites (Figure 4,5) are transition states while the QM/MM model indicates they are 

minima. In addition, the QM-only and QM/MM geometries have noticeable differences, 

because the QM cluster does not have sufficient structural rigidity. Compared to the 

SIMOMM model, the QM structures in which a Ga adatom or a Ga2 dimer span more than 

one surface dimer have the largest distortions in geometries. 

 Some aspects of the QM-only and QM/MM potential energy surfaces are in 

qualitative agreement. Relative energies for structures in which Ga adatoms are separated 

appear to be insensitive to the presence of bulk MM atoms. Both the QM and QM/MM 

models demonstrate that pairs of Ga adatoms spontaneously form a Ga2 dimer when they 

approach one another. Both models also predict that a Ga adatom freely diffuses along the 

dimer row.  

In both QM and QM/MM models, the most energetically stable structures correlate 

with small diradical (i.e., nearly closed shell) character. These structures correspond to 

arrangements of Ga adatoms or Ga2 dimer that maximize the interaction with the dangling 

dimer bonds. In addition, the formation of the Ga2 dimer bond surely plays an important role 

in the stabilization of the surface clusters investigated here.   
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Figure 2: !,","*,!* natural orbitals of Si9H12. The " ("*) natural orbital has a 
NOON value of ~1.66 (~0.33). The ! (!*) natural orbital has a NOON value 
of ~1.98 (~0.02). 
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Figure 6: Two-dimer QM cluster used by QM and QM/MM 
models. The labels in red refer to the positions of Ga adatoms in 
the Ga2 dimer structures. 
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Figure 13: Geometries of optimized QM and QM/MM 5-4B structures. 
Note: MM region of QM/MM model is not shown. 
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Table 3: Relative energy difference between structures common 
to Ga QM and QM/MM . 

E[QM]a – E[QM/MM]b    (kcal/mol) Structure 2S+1 CASSCF MRMP2//CASSCF 
on-dimer 1 0.7 0.7 

on-top 1 0.0 0.0 
off-center 1 -3.0 -0.8 
on-dimer 3 0.8 0.8 

on-top 3 0.2 0.2 
on-top!off-

center 
3 -0.9 0.9 

off-center 3 -3.4 -2.1 
MAE  1.3 0.8 

aenergy relative to singlet QM on-top structure 
benergy relative to singlet QM/MM on-top structure 
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Table 4: Relative energy difference between structures 
common to Ga2 QM and QM/MM models that describe. 

E[QM]a – E[QM/MM]b    (kcal/mol) Structure 2S+1 CASSCF MRMP2//CASSCF 
5-6 1 0.0 0.0 

 5-4!5-2 1 -0.9 2.0 
5-2 1 0.3 0.6 

5-2!5-1 1 1.0 1.4 
5-1 1 0.3 0.6 

3-4B 1 -4.0 -1.8 
5-4B!3-4B 1  -8.4 -6.7 

5-4B 1 -8.7 -15.2 
5-4B!7-9B 1 ? ? 

7-9B 1 4.0 3.2 
5-6 3 0.2 0.4 

5-6!5-4 3 -0.8 1.3 
5-4 3 -2.5 -1.2 

5-4!5-2 3 -1.2 1.3 
5-2 3 0.3 0.5 

5-2!5-1 3 1.0 1.2 
5-1 3 0.3 0.5 

5-4!3-4B 3 -4.0 -0.7 
5-4B 3 -4.6 7.3 
3-4 3 -5.9 -2.7 

5-4!5-4B 3 -2.8 -0.7 
5-4B!5-7B 3 -0.5 0.8 

5-7B 3 -0.4 0.9 
MAE  2.3 2.3 

aenergy relative to QM singlet 5-6 structure 
benergy relative to QM/MM singlet 5-6 structure 
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CHAPTER 5. CAN KOHN-SHAM ORBITALS BE USED TO INTERPRET 
ELECTRONIC SPECTRA? 

 
Luke Roskop, Federico Zahariev, Kenneth Hanson, and Mark S. Gordon 

 
The validity of the use of orbital interpretations in excited state chemistry is discussed. In 

particular, a set of criteria is suggested to validate the use of Kohn-Sham (KS) orbitals to 

interpret electronic excited states and photochemistry. Time dependent density functional 

theory (TDDFT) and the Tamm-Dancoff approximation to TDDFT are the primary tools that 

can be employed to assess the efficacy of using KS orbitals to interpret electronic excited 

states. The limitations on orbital interpretations is considered, together with examples that 

illustrate both a successful and unsuccessful application of such interpretations.  

1. Introduction 

Molecular orbitals (MOs) are often used to interpret chemical phenomena.1,2 Strictly 

speaking, this approach, while time-honored and frequently useful, is only approximate, 

because the total energy of a system is not the sum of the orbital energies, and because MOs 

are not physical observables. Indeed, MOs arise from invoking the independent particle 

(orbital) model when the many-body problem is encountered in attempting to solve the 

many-electron time-independent Schrödinger equation. That is, the exact wavefunction is 

approximated as a determinant (more generally, as a linear combination of determinants) of 

one-electron functions (MOs):  

 

 
One can generate a set of orbitals from single reference electronic structure methods 

!(x1,x2,...,xN ) " 1
N! #(x1),#(x2 ),...,#(xN )                                                                         (1)
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like Hatree-Fock (HF)3 and density functional theory (DFT)4,…). Whether these orbitals can 

provide any substantial insight into electronic spectroscopy or photochemical behavior is not 

apparent from the orbitals alone. Comparisons with experiment are useful, but not generally 

sufficient, because one can obtain apparent agreement with experiment for specific cases for 

the wrong reason; that is, even thought the underlying physics may be incorrect. It would 

therefore be beneficial to have a sound theoretical analysis of the validity of simple orbital 

interpretations that is easily applied to electronic spectroscopy and photochemistry. This 

paper proposes a set of criteria that, when satisfied, provides credence for orbital 

interpretations within the very popular DFT approximation.  

2. Excited state methods 

 Many methods are routinely used to predict and interpret electronic absorption 

spectra of chemical systems. A brief review of a few of these methods is presented here. 

2A. MO energy differences 

Orbital based discussions of electronic excited states often focus on excitations from 

the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO). Of the three most commonly used methods to determine MOs, extended Hückel 

theory (EHT),5 Hartree-Fock (HF) theory, and DFT, only in EHT can the total energy be 

correctly written as a sum of the orbital energies. Because HF and DFT include electron 

repulsions, a sum of all orbital energies double-counts these repulsions.6 So, only in EHT can 

excitation energies be expressed as LUMO-HOMO energy differences. Although HF MO 

energies and DFT Kohn-Sham (KS) orbital energies cannot by themselves be used to make 

quantitative predictions of excitation energies, they can be useful for rationalizing observed 

phenomena, as HF MOs (and KS orbitals) capture characteristic attributes of the 
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wavefunction. These attributes, for example, may be described in terms of orbital nodes, 

orbital phases, and orbital symmetry. As demonstrated by Woodward and Hoffman,2 MOs 

can be routinely applied to understand chemical reactivity.  

2B. Configuration interaction 

 Configuration interaction (CI) constructs excited state wavefunctions, usually from a 

set of HF orbitals, by taking a linear combination of one-electron replacements from HF 

occupied orbitals into virtual orbitals (CI singles = CIS) plus double replacements (CISD), 

etc. So, the CI wavefunction is a linear combination of determinants: 

 

 
!CI = CHF"HF + CS"S

S
# + CD"D

D
# +!                                                                              (2)

 
If all possible replacements are included in Eq. (2), the resulting wavefucntion is 

called Full CI (FCI) and is the exact wavefunction for a given atomic basis set. Generally, 

FCI is not computationally tractable, so one truncates the expansion in Eq. (2). The simplest 

CI level of theory is CIS. The CIS expansion coefficients (CS in Eq. (2)) quantify the 

contribution of an occupied-unoccupied MO pair for a particular excited state wavefunction. 

For example, if there is a dominant CIS expansion coefficient (CS ~ |1.0|) that corresponds 

(for example) to a HOMO!LUMO excitation, then the frontier MO pair would be useful for 

interpreting electronic excited states. Of course, since CIS only includes single excitations, 

this method cannot describe excited states that have double excitation character. The latter 

require at least double excitations.  

2C. Time dependent HF, time dependent DFT and the Tamm-Dancoff Approximation 

Time dependent HF (TDHF) is used to directly compute excitation energies from the 

HF single-determinant wavefunction, by solving the linear response equations summarized in 
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Eq. (3), below. In Eq. (3), the left-most term is the response matrix, ! represents the 

excitation energies, and X (Y) is a vector that denotes excitation (de-excitation) coefficients. 

The elements of the singlet (triplet) A (B) matrix are given in Eq. (4)-(5) (Eq. (6)-(7)). The 

leading term of the diagonal of matrix A (Eq. 4) is an orbital energy difference between 

occupied MO i and unoccupied MO a. The remaining terms in A and B are two-electron 

integrals over occupied MOs i, j and unoccupied MOs a, b. The excitation and de-excitation 

coefficients can be interpreted as the weight of a particular excitation (i!a) and de-excitation 

(a!i), respectively, in the computed excitation energy. 

 
A  B
B  A

!
"#

$
%&

X
Y

!
"#

$
%& =' 1  0

0 (1
!
"#

$
%&

X
Y

!
"#

$
%&                                                                                                (3)

  

Singlet
Aia,jb

TDHF = ! ij!ab ("a # " i ) + 2(ia|bj) + (ib|aj)                                                                   (4)

Bia,jb
TDHF = 2(ia|bj) + (ib|aj)                                                                                            (5)

$
%
&

'&

Triplet
Aia,jb

TDHF = ! ij!ab ("a # " i ) + (ib|aj)                                                                                  (6)

Bia,jb
TDHF = (ib|aj)                                                                                                           (7)

$
%
&

'&

  

 
Time dependent DFT (TDDFT) also computes excitation energies using Eq. (3). 

Unlike TDHF, the TDDFT equations include an exchange-correlation term (  fXC
! ) in A and B 

(Eq. (8)-(11)). The superscript !  on   fXC
!  is used to indicate whether the exchange-correlation 

functional was derived for a singlet (S) or triplet (T) state. The weighting factor cDFT 

 (cHF = 1! cDFT )  is a DFT on/off switch for the matrix elements in A and B. For example, if 

cDFT = 0 (cHF = 1) Eqs. (8)-(11) reduce to TDHF (Eqs. (4)-(7)). If cDFT = 1 (cHF = 0), Eqs. (8)-

(11) are appropriate for a generalized gradient approximation (GGA) DFT. If both cDFT and 

cHF are nonzero, then Eqs. (8)-(11) apply to hybrid functionals.  
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Singlet
Aia,jb

TDDFT = ! ij!ab ("a # " i ) + 2(ia|jb) + cHF(ij|ab) + cDFT (ia | fXC
S | jb)                              (8)

Bia,jb
TDDFT = 2(ia|bj) + cHF(ib|aj) + cDFT (ia | fXC

S | bj)                                                        (9)

$
%
&

'&

Triplet
Aia,jb

TDDFT = ! ij!ab ("a # " i ) + cHF(ij|ab) + cDFT (ia | fXC
T | jb)                                             (10)

Bia,jb
TDDFT = cHF(ib|aj) + cDFT (ia | fXC

T | bj)                                                                       (11)

$
%
&

'&
 

One simplification that can be applied to both the TDHF and TDDFT linear response 

equations (Eq. 3) is the Tamm-Dancoff approximation (TDA).7,8 The TDA reduces the 

complexity of Eq. (3) through neglect of the B matrices, which reduces Eq. (3) to Eq. (12). 

The application of TDA to the TDHF method (TDA-TDHF) leads to the CIS method. 

Analogously, the TDA-TDDFT method can be thought of as the DFT equivalent to the CIS 

method.  

 
AX =!X                                                                                                                                (12)
 
3. Kohn-Sham orbital interpretations 

Interpretations of chemical behavior based on KS orbitals must be applied only to 

obtain qualitative guidance, such as how the stabilization or destabilization of the HOMO or 

LUMO might affect the absorption energy. If one wishes to understand electronic 

spectroscopy or photochemical behavior using KS orbitals, then the conditions described in 

the following paragraphs should be satisfied. 

Solutions to the linear response TDDFT equations contain coefficients that describe 

both excitations and de-excitations. The coefficient Xi!a (see Eq. (3)) refers to an electronic 

excitation from an occupied orbital (i) to a virtual orbital (a), and Ya!i is the complementary 

de-excitation coefficient. The TDDFT normalization condition (Eq. (13)) involves both Xi!a 

and Ya!i, where the summation runs over all occupied orbitals (i) and virtual orbitals (a). This 
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coupling between Xi!a and Ya!i complicates the TDDFT normalization condition. Thus, the 

TDDFT coefficients cannot definitively indicate the importance of a KS orbital pair in a 

particular excited state transition. 

 

1 = (Xi!a )2 " (Ya! i )
2( )

a

virt

#
i

occ

#                                                                                          (13)  

 
On the other hand, the TDA-TDDFT approximation may be simply interpreted in 

terms of single excitations from occupied to virtual KS orbitals, in analogy with CIS. 

Therefore, the TDA-TDDFT coefficients can clearly identify the probability that a KS orbital 

pair contributes to a particular excited state transition. The coefficient Xi!a gives the 

importance of the particular excitation i!a to the excited state wavefunction. For the TDA 

approximation to TDDFT, TDA-TDDFT, to be reliable, the TDA-TDDFT properties must be 

in good agreement with the full TDDFT method (criterion #1). If this is the case, simple 

orbital interpretations may be viable. If criterion #1 is satisfied and if there is a dominant 

TDA-TDDFT coefficient (e.g., Xi!a>|0.9|), then the excited state may be interpreted in terms 

of the corresponding excitation i!a (criterion # 2). The final criterion (criterion #3) is the 

simplest: The spectrum predicted by TDDFT and TDA-TDDFT must be in good agreement 

with experiment. Then, the shape, symmetry, and nodal planes of the KS orbitals can be 

useful features to aid in the understanding of spectroscopy and photochemistry.  

4. Applications 

 The criteria presented above to validate a KS orbital interpretation of photochemical 

behavior are now applied to several systems to illustrate situations in which it is and is not 

appropriate to employ a KS orbital analysis. These systems include five 1,3-bis(2-
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pyridylimino)isoindolate platinum chloride derivatives and three magnesium-centered 

porphyrin derivatives. All structures were optimized by DFT using the hybrid B3LYP 

functional.9 All stationary points were confirmed as minima on the ground state potential 

energy surface by diagonalizing the Hessian (matrix of energy second derivatives). Both 

TDDFT and TDA-TDDFT excitation energies were calculated using the B3LYP functional. 

All properties are computed with the General Atomic Molecular Electronic Structure System 

(GAMESS).10 

4A. 1,3-bis(2-pyridylimino)isoindolate platinum chloride derivatives 

Five previously reported platinum(II) complexes (Figure 1)11 of the form 

(N^N^N)PtCl are reexamined, where N^N^N represents the tridentate monoanionic ligands 

2,5-bis (2-pyridylimino)3,4-diethylpyrrolate (1A), 1,3-bis(2-pyridylimino)isoindolate (1B), 

1,3-bis(2-pyridylimino)benz(f)isoindolate(1C), 1,3-bis(2-

pyridylimino)benz(e)isoindolate(1D) and 1,3-bis(1-isoquinolylimino) isoindolate (1E). 

Platinum and chlorine are described using the MCPtzp and MCPdzp small-core model core 

potentials, respectively,12 whereas all other atoms are treated with the cc-pVDZ all-electron 

basis set.13 The effects of solvent (CH2Cl2) on the excitation energies are considered with the 

conductor-like polarizable continuum model (CPCM).14 

Table 1 displays the lowest TDDFT excitation energies for both gas and solution 

phase. Relative to 1A, TDDFT confirms that 1B and 1C exhibit a blue-shift in absorption 

with each successive benzannulation at the pyrrole position. Although complexes 1D and 1E 

are also benzannulated versions of 1B, they display a red-shift in absorption relative to 1B, as 

opposed to the blue-shift observed for 1C. This computed absorption trend agrees with the 

experimental results. 
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The TDA-TDDFT excitation energies qualitatively agree with the trend established 

by TDDFT. The squares of the TDA-TDDFT excitation coefficients indicate the 

HOMO!LUMO transition dominates the lowest energy excitations (85-90%) among all 

structures. The qualitative agreement between TDA-TDDFT and TDDFT combined with the 

large HOMO!LUMO excitation coefficient validates a KS orbital interpretation of the 

observed trend. Since TDA-TDDFT indicates that the lowest energy excitation is dominated 

by the HOMO!LUMO transition, any orbital interpretation of the observed trends must 

consider these two frontier orbitals. 

The KS HOMO and LUMO energies for the ground state of each system are also 

listed in Table 1. It is apparent the KS HOMO energies remain relatively constant while the 

LUMO energies increase (decrease) from 1A to 1B to 1C (1B to 1D to 1E). The theoretical 

results suggest that this uncharacteristic blue-shift in absorption from 1A to 1B to 1C is due 

to destabilization of the LUMO with each successive expansion of the "-system off the 

pyrrolate moieties. This destabilization of the LUMO can be understood through a simple KS 

orbital interpretation, as discussed in the next paragraph. 

 One can visualize the formation of the frontier molecular orbitals of 1B by combining 

the valence orbitals of 1A with those of 1,3-butadiene as illustrated in Figure 2. The HOMO 

makes virtually no contribution at the site of benzannulation of 1A by 1,3-butadiene, thus no 

orbital mixing is observed, and the HOMO energy remains essentially unchanged in 1B. The 

LUMO of 1A is localized primarily on the "-system of the ligand. If one ignores the out of 

plane distortion of the chloride atom, 1A can be idealized as having C2v symmetry. In this 

point group, the LUMO of 1A can be considered to have b2 symmetry. Cis-1,3-butadiene also 
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has C2v symmetry, with the HOMO and LUMO belonging to the irreducible representations 

b2 and a2, respectively. The a2 symmetry of the LUMO of 1,3-butadiene cannot mix with the 

b2 LUMO of 1A. However, both the HOMO of 1,3-butadiene and the LUMO of 1A have the 

same b2 symmetry, so they can combine to create an occupied bonding MO (not shown) and 

an unoccupied antibonding orbital (LUMO of 1B) with the addition of a new nodal plane at 

the site of attachment. The favorable orbital symmetry enables the HOMO of 1,3-butadiene 

to act as an effective electron donating group to the LUMO of 1A. The net consequence of 

these interactions is an unaltered HOMO and a destabilized LUMO that results in the 

observed blue-shifted absorption upon benzannulation of 1A. Likewise, a similar 

combination of the frontier orbitals of 1B and 1,3-butadiene leads to an unaltered HOMO and 

a destabilized LUMO as seen in 1C. Even when the geometry deviates somewhat from the 

idealized C2v symmetry, the nodal behavior of the orbitals at the site of butadiene addition 

can be used to make reasonable qualitative arguments. 

 The symmetry of interacting orbitals can also be used to interpret the effects of 

benzannulation at other positions of 1B. When 1B is benzannulated at either the 5,6-positions 

or the 3,4-positions (to form 1D and 1E, respectively) the LUMO is stablized, illustrated in 

Figure 3. The orbitals of 1B can be characterized by the presence or absence of a bisecting 

nodal plane at the site of benzannulation. The absence of a perpendicular bisecting nodal 

plane at either of the relevant positions of the LUMO of 1B favors a cooperative interaction 

with the LUMO of 1,3-butadiene that leads to a bonding/antibonding pair of MOs. The end 

result is a stabilized LUMO in both 1D and 1E. 

 For the five platinum(II) complexes, a KS orbital interpretation is valid, since the 

three criteria discussed above are satisfied: 1) the absorption trends established by TDA-
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TDDFT agree with TDDFT and experiment, 2) the TDA-TDDFT indicates the dominant 

transition is HOMO!LUMO, and 3) the orbital interpretation supports the observed 

behavior. 

4B. Magnesium porphyrin derivatives 

 Three Magnesium porphyrin derivatives (Figure 4) are examined to illustrate a 

system for which an orbital interpretation of photochemical behavior is not appropriate. 

Complexes 4B and 4C are substituted versions of 4A. All DFT ground state optimizations 

and TDDFT excited state computations used the 6-31G (d,p) basis set.15  

Table 2 displays TDDFT and TDA-TDDFT excitation energies for the lowest energy 

transition of 4A, 4B, and 4C. TDA-TDDFT predicts a red-shift (relative to 4A) in the 

absorption spectrum for structure 4B and structure 4C. The TDA-TDDFT absorption energy 

of 4C (relative to 4A) red-shifts by 36 nm while TDDFT indicates 4B and 4C have similar 

absorption energies.  

The TDA-TDDFT coefficients listed in Table 2 demonstrate that the excited state 

transitions for 4A-4C are much more complicated than a simple HOMO!LUMO transition. 

The coefficients for the HOMO-LUMO contribution to the excitation are on the order of 0.5, 

so the HOMO-LUMO excitation contributes only about half of the excitation energy. Thus, 

the trend of the lowest energy Mg-porphyrin excited state transitions for structures 4A-4C 

cannot be interpreted with a simple orbital analysis.  

5. Conclusions. 

Three criteria were presented as guidelines to validate KS orbital interpretations in 

excited state chemistry: 
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1) The TDA-TDDFT properties, particularly the excitation energy, must be in good 

agreement with the full TDDFT method  

2) If criterion 1 is satisfied and if there is a dominant TDA-TDDFT coefficient (e.g., 

Xi!a>|0.9|), then the excited state may be interpreted in terms of the corresponding 

excitation i!a. 

3) The spectrum predicted by TDDFT and TDA-TDDFT must be in good agreement 

with experiment.  

Since KS orbitals are not physical observables, the use of KS orbitals in the interpretation of 

photochemical behavior must be carefully considered. Like CIS, TDA-TDDFT coefficients 

can clearly indicate which orbital pairs contribute to a particular excited state transition.  

For the platinum(II) complexes, the TDA-TDDFT predictions of the lowest 

absorption energies were in agreement the TDDFT absorption frequencies (criterion #1). The 

lowest energy transitions for the series of platinum(II) complexes were shown to be 

dominated by a single excitation (HOMO!LUMO) (criterion #2). Both the TDA-TDDFT 

and TDDFT calculated absorption energies of the platinum(II) complexes are in agreement 

with experimental measurements (criterion #3). Since all three criteria were satisfied for the 

platinum(II) complexes, a Kohn-Sham orbital interpretation of the absorption trend is valid 

and shown to successfully predict the trend in absorption energies. Conversely, a series of 

Mg-porhoryns was shown to have double excitation character. Thus, the series of Mg-

porhoryn systems does not satisfy criterion #2 for an orbital interpretation of the absorption 

trends.  
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Figure 1: Series of substituted platinum complexes. 

3 

thermally stable, readily synthesized,7 easily 

modified, have high molar absorptitivities and are 

emissive at room temperature.6 

Herein we present the synthesis and 

characterization of a family of (BPI)PtCl 

derivatives (Chart 1) for which both red- and blue-

shifts are observed when the !-system is extended, 

e.g. !max(absorption) for complexes 2, 3 and 4 are 

487, 477 and 529, respectively. The direction of 

the shift upon benzannulation is dependent on the site of benzannulation. Our experimental and 

theoretical studies show that the spectral shift are dependent on the stabilization or destabilization of 

specific orbitals (LUMO) upon benzannulation. In other metal complexes and organic molecules, 

similar site selective red and blue shifts have been observed as a result of benzannulation.  Blue shifts in 

these compounds have been ascribed to molecular distortions,8 shifts in total antibonding character,5c, d 

or increased localization of "* orbitals.5a  None of these explanations give clear insight into the origin of 

the shift or how to use it to intentionally tune the transition energies in these materials.   The model 

presented here accurately predicts the direction of energy shift, upon benzannulation, of a wide range of 

compounds, and gives insight into the origin of the energy shift.. 

Molecular orbital calculations are a common tool used to interpreting chemical behaviour.  However, 

in many cases they can provide an explanation that correlates nicely with the experiment, but the use of 

molecular orbital interpretations is not always justified. The time-dependent density functional theory 

(TDDFT), which is typically used to calculate the excitations of larger systems, complicates the 

molecular orbital analysis due to the fact that a given TDDFT excitation could be composed of several 

molecular-orbital transitions up in energy (“excitations”) as well as several transitions down in energy 

(“de-excitations”).  This paper introduces a scheme that one can routinely use to determine the validity 
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Figure 2: Qualitative orbital diagram of the valence orbitals for complexes 1A, 1B, and 1C. 
The HOMO (bottom, solid) and LUMO (top, transparent) surfaces are displayed as viewed 
above the !-symmetric orbitals, with opposite phases above and below the plane of the 
molecule. All orbital energies are presented in eV. 
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Figure 3: Qualitative orbital diagram of the valence orbitals for complexes 1B, 1D, and 1E. 
The HOMO (bottom, solid) and LUMO (top, transparent) surfaces are displayed as viewed 
above the !-symmetric orbitals, with opposite phases above and below the plane of the 
molecule. All orbital energies are presented in eV. 
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Figure 4: Series of substituted magnesium porphyrin substituted complexes. 
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CHAPTER 6. SILICA MESOPOROUS MOLECULAR SIEVES AND THE 
FRAGMENT MOLECULAR ORBITAL METHOD  

 
Luke Roskop, Dmitri G. Fedorov, and Mark S. Gordon 

 
The fragment molecular orbital (FMO) method is applied to model systems that mimic 

amorphous silica nanopores. FMO-RHF (restricted Hartree-Fock) is shown to reliably 

approximate the RHF energy, the dipole moment, and the energy gradient. The application of 

the FMO method to mesoporous silica nanopores (MSNs) of the MCM-41 type is discussed 

and an error analysis is given. A fragmentation scheme for MSNs is illustrated to provide 

guidance for future applications of the FMO method to these systems. 

1. Introduction 

 Mesoporous silica nanoparticles (MSNs)1 promise to play an important role in 

heterogeneous catalysis, separations, sensing, drug delivery, imaging, and controlled 

release/sequestration.2,3,4,5 These potential applications benefit from the many unique 

properties of MSNs, which include high surface area (>700 m2g-1), large pore volume (>0.9 

cm3g-1), good thermal stability, and low reactivity. Although MSNs are comprised of 

amorphous silica, at the mesoscopic level they are ordered into structures that are best 

described as hexagonal, cubic, or lamellar. For example: MCM-41 is a hexagonal array of 

uniform mesopores that have a tunable pore size ranging from 2-30 nm. 

Applications of MSNs involve the functionalization of the interior surface of a 

mesopore with the appropriate chemical groups. These applications call for a comprehensive 

understanding of the interactions of functional groups among each other and the interior 

surface of the mesopore. The techniques of solid state nuclear magnetic resonance (NMR)6,7 

and vibrational spectroscopy8 can indicate the proximity of functional groups to the interior 
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surface of the mesopore and other functional groups. Though these experimental methods are 

highly credible, computational models are frequently used to interpret experimental results. 

In addition, computational models are frequently designed from experimental insights.  

 There are not many reliable computational methods that can efficiently treat large 

molecular systems like MCM-41 (>103 atoms). Molecular mechanics (MM) is commonly 

used to treat large biological, condensed phase, or crystalline systems. On the other hand, 

MM methods do not allow for connectivity changes between atoms while a chemical system 

evolves. One model potential that treats both chemical reactivity and polarization effects is 

the reactive force field (ReaxFF).9 From distance dependent bond orders, ReaxFF is able to 

modify the connectivity between atoms “on the fly.” This enables ReaxFF to properly 

account for bond dissociation/formation while a reaction progresses.  

 The more sophisticated quantum mechanical (QM) methods allow chemical systems 

to be treated in a general manner that is free of empirically fitted parameters. Since QM 

methods become computationally prohibitive for systems comprised of large numbers of 

atoms (> 50 heavy atoms), it is common to examine only the chemically important region of 

a large molecular system.10 An Efficient QM treatment of large molecular systems usually 

employs a so-called fragmentation method. Over the years, much effort has been spent on 

development of various fragmentation methods.11,12,13,14,15 In particular, the fragment 

molecular orbital (FMO) method has shown great promise in applications that involve 

proteins, silicon nanowires, and zeolite cages.16  

In the FMO method, one divides a chemical system into fragments, also called 

monomers. A modified Fock operator is constructed for each monomer, so that the Coulomb 

field that originates from all of the other monomers is incorporated into this monomer Fock 
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operator. Hartree-Fock equations are then solved in the usual iterative manner for each 

monomer. This level of theory is referred to as FMO1. To obtain more accurate energies and 

properties, one can explicitly include in the calculation all pairs of fragments (dimers). The 

dimer corrections are also computed in the Coulomb field of the remaining fragments, but the 

dimer calculations are not iterated to self-consistency. For even greater accuracy, one can 

include higher order corrections such as three-body (trimer) interactions in a similar manner. 

Equation 1 is used to determine the total energy of a system treated with FMO. In Eq. 1: EI  

is the energy of monomer I, EIJ is the energy of dimer IJ, andEIJK is the energy of trimer IJK. 

 

 

EFMO = EI
I
! + (EIJ " EI " EJ )

I > J

N

! +

[(EIJK " EI " EJ " EK ) " (EIJ " EI " EJ ) "
I > J > K

N

!                              

(EJK " EJ " EK ) " (EKI " EK " EI )]+!                                                        (1)

 

 
This paper examines the suitability of the fragment molecular orbital method (FMO) 

for the study of MSN materials of the MCM-41 type. In the FMO method, the bonds that 

interconnect monomers are detached, and subsequently frozen in the SCF calculation. The 

FMO adaptive frozen orbital (AFO)16 bond detachment scheme, which was designed to 

describe solids and surfaces, is used here to detach bonds between monomers. In the AFO 

scheme, a bond detached atom (BDA) and bond attached atom (BAA) are defined to specify 

which of the monomers retains the detached bond in their model space. A useful approach for 

fragmenting MSNs is suggested, and its performance is examined. 
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2. Method 

The FMO method is used to examine four isomers that are intended to mimic a 

portion of a single MSN mesopore that is consistent with the MCM-41 morphology. Each 

isomer (A, B, C and D) in Figure 1 is functionalized with four (pentafluorophenyl)propyl 

substituents (Figure 2) and comprised of 1770 atoms (Si392O954C36F20H368) in which each 

isomer differs by the arrangement of the substituents. Each isomer was fully optimized with 

molecular mechanics using the MM3 force field parameters17 in the Tinker program.18 In 

Figure 1, the various colors that label different regions of each structure indicate each of the 

monomers if the system were fragmented into 32 monomers. Each model has a pore diameter 

of ~28Å (which is consistent with the experimental parameters) and a pore length of ~17.5Å 

(farthest heavy-heavy atom distance along interior surface of the pore). All dangling bonds 

are terminated with hydroxide groups since a truncated pore structure is used.  

In the case of separating a Si-O bond that connects two monomers that are part of the 

silica pore structure, the O atom is assigned as the bond attached atom (BAA) and the Si 

atom is assigned as the bond detached atom (BDA). Fragmentation schemes for each of the 

four systems are shown in Figure 3 with each monomer indicated by a different color. 

Models A-D were fragmented into 32, 30, 26, and 14 monomers. To study the effects of 

placing two fragmented bonds close to one another, two different approaches are used in the 

14 monomer model, referred to as 14a and 14s. The 14a scheme corresponds to an aligned 

arrangement of bond detached atoms (BDAs) and bond attached atoms (BAAs) while the 14s 

scheme was designed to stagger the BAAs and BDAs(Figure 4). The average number of 

atoms/monomer in structures A-D for fragmentation schemes 14a/s, 26, 30 and 32 are 126, 

68, 59, and 55 atoms, respectively. 
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FMO properties are computed for FMO2 (including up to dimer corrections) and 

FMO3 (including up to trimer corrections) at the restricted Hartee-Fock (RHF) level of 

theory. FMO and full RHF (un-fragmented system) gradient computations are performed 

using the STO-3G basis set.19 The FMO energy, dipole moment, and energy gradient are 

compared to the full RHF results. The AFO method is used to construct all inter-fragment 

bonds. 

Since the FMO method divides a large chemical system into smaller, more 

manageable monomers, the chemical bonds that interconnect monomers must be carefully 

considered. The AFO method is used to construct the chemical bonds that interconnect 

monomers. The AFO method constructs bonding orbitals that interconnect monomers from 

model systems that include both the BDA and BAA. The detached bond orbitals are 

extracted from the localized orbitals of these model systems and consequently frozen in FMO 

calculations. The size of the AFO model systems was varied to understand the effects on 

FMO properties. Both a small and large AFO model system was used. The small model 

system (H3Si-OH) contains just the BDA (Si) and BAA (O), which were capped with 

hydrogen atoms oriented in the direction of the atoms previously bonded to the BDA and 

BAA. The large model system [(OH)3Si-O(SiH3)3] incorporates the nearest neighbors to the 

BDA and BAA, the nearest neighbor atoms are similarly capped with hydrogen atoms.  

 The performance of FMO2-RHF and FMO3-RHF is compared to the full RHF 

computation. More specifically, the error in the FMO total energy, dipole moment, and 

gradient are compared with the RHF results. In Equations 2-5, n refers to the FMOn level 

(i.e. FMO2), EFMOn-RHF  (ERHF ) is the FMOn-RHF (RHF) energy,  dn
FMOn-RHF ( d

RHF ) is the 

FMOn-RHF (RHF) dipole vector, and !EFMOn-RHF (!ERHF ) is the FMOn-RHF (RHF) energy 
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gradient. !En  represents the error in energy at FMO level n, dn
RMS  represents the error in 

dipole moment at FMO level n, !Gn
RMS  represent the RMS error in the gradient at FMO level 

n, and !Gn
MAX  represents the maximum error in the gradient at FMO level n. 

 

!En = EFMOn-RHF " ERHF                                                                                                           (2)  

 
dn

RMS =
dn

FMOn-RHF ! dRHF 2

3
                                                                                                    (3)  

!Gn
RMS =

"EFMOn-RHF # "ERHF

3Natoms

                                                                                            (4)  

!Gn
MAX = max "EFMOn-RHF # "ERHF( )                                                                                      (5)  

 

3. Results and discussion 

 Table 1 presents the average errors in the energy, the dipole moment, and the gradient 

among structures A-D. The FMO2 average energy errors are not noticeably affected whether 

a large or small model system is used to construct the AFOs. The errors in the FMO2 

energies depend on the size (or number) of monomers. At the FMO2 level, a systematic 

decrease in the energy errors is seen going from the largest number of monomers (~225 

kcal/mol) to smallest number of monomers (~40 kcal/mol). FMO3 exhibits much smaller 

energy errors than FMO2. With respect to the various fragmentation schemes, the FMO3 

average energy errors have a maximum absolute error of 5.4 kcal/mol and a minimum 

absolute error of 0.1 kcal/mol. The much smaller errors for FMO3 than for FMO2 clearly 

indicates that three-body effects are very important in MSN species. From Table 1 it is seen 
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that the energy errors at the FMO3 level are only slightly sensitive to the fragmentation 

scheme. 

 Similar to the average error in the energy, the average error in the dipole moment 

shows a systematic decrease as the number of monomers decrease (and the cost of the 

computation increases). The size of the model system used to construct the AFOs also 

influences the average error in the dipole moment. The average errors in both the FMO2 and 

FMO3 dipole moments are the smallest when a large model system is used to construct the 

AFOs. 

The FMO3 average !Gn
MAX  and !Gn

RMS  errors are smaller than the FMO2 gradient 

errors. Using a smaller number of fragments tends to decrease the average gradient errors, 

since the system is less fragmented. The FMO2 and FMO3 gradients have the smallest errors 

when large model systems are used to construct the AFOs. 

Although the average energy errors among A, B, C and D decrease for FMO3 relative 

to FMO2, the energy differences among the isomers are also important. Table 2 shows 

isomerization energies among models B-D compared to model A. From Table 2 it is 

immediately seen that FMO3 outperforms FMO2, regardless of the number of monomers. 

The largest FMO3 isomerization error is ~12 kcal/mol for model C when the fragmentation 

schemes are comprised of 32, 30, or 26 monomers. The agreement for 14 monomers is 

essentially perfect. 

FMO2 overestimates isomerization energies by ~10-50 kcal/mol for all systems that 

are configured with 32, 30 and 26 monomers, regardless of the size of model space used to 

construct the AFOs. The most accurate FMO3 isomerization energies are attained when the 
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smallest number of monomers (scheme 14a/s) is used (errors < 1 kcal/mol). The staggered 

(14s) and aligned (14a) arrangements of BAAs and BDAs give rise to similar errors. 

4. Conclusions 

 The FMO method has been applied to mesoporous silica nanoparticles (MSN) that 

mimic a small section of a mesopore consistent with the MCM-41 morphology. As the FMO 

level is increased from FMO2 to FMO3, the energy, the dipole moment, and the energy 

gradients approach the full RHF values. The size of the model system used to construct the 

AFOs does not affect the structural energies, but the AFO model size does affect the errors in 

the dipole moment and the energy gradients. Both FMO2 and FMO3 calculations that 

employ AFOs constructed from a large model systems show less error in the dipole moment 

and the energy gradient than AFOs constructed with small model systems. 

 Out of all the fragmentation schemes discussed here, the approach that uses the 

fewest number of monomers (14a/s) has the smallest errors. FMO3 is necessary to achieve 

results that are comparable to RHF. It is suggested here that using basis sets larger basis sets 

than STO-3G to study MSNs would result in properties close to the full RHF properties. 
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Table 1: Error analysisa for the fragmentation at the FMO2-RHF and FMO3-RHF level.  
Errors are averaged over models C1-C4 defined by Figure 1. 

AFO 
Model Large Large Large Small Small Small Small Small 

# monomers 26 14a 14s 32 30 26 14a 14s 
!E2  226.0 49.9 43.1 241.1 230.5 223.1 48.9 41.4 
!E3  3.1 -0.2 -0.2 5.0 4.9 5.4 -0.3 -0.1 
!d2

RMS  1.0 0.5 0.5 3.0 2.8 2.7 1.2 0.6 
!d3

RMS  0.6 0.2 0.3 1.4 1.1 1.3 0.5 0.5 
!G2

MAX  6.6 5.7 5.6 6.8 6.8 6.9 5.7 5.6 
!G3

MAX  3.2 1.4 1.6 4.8 4.8 4.8 2.1 1.8 
!G2

RMS  1.2 0.5 0.5 1.5 1.4 1.4 0.5 0.5 
!G3

RMS  0.5 0.2 0.2 0.7 0.7 0.7 0.3 0.3 
aIn energy!En (kcal/mol), dipole moment!dn

RMS (debye), and gradient !Gn
MAX and  

!Gn
RMS (10-3 au/bohr). 
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Figure 1: Models C1-C4 are four MSN isomers (Si392O954C36F20H368) whose interior is  
substituted with four (pentafluorophenyl)propyl functional groups (highlighted for clarity). 
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Figure 2: Schematic representation of a hydroxylated MSN pore 
functionalized with (pentafluorophenyl)propyl substituents. 
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Figure 3: Four fragmentation schemes used for Models A, B, C, and D. A-D are fragmented 
into 32, 30, 26, or 14 monomers. Each monomer is numbered. 

  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 154 

Figure 4: Aligned (14a) vs staggered (14s) arrangement of bond-detached atoms 
(BDA - red color) and bond-attached atoms (BAA - blue color). M and N refer to  
monomers that are interconnected by multiple Si-O-Si bridge. 
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CHAPTER 7. GENERAL CONCLUSIONS 

 
 In chapter 2, several Si(100) cluster models were investigated using several MCSCF 

methods, including full CASSCF, various ORMAS approximations, and GVB-PP. It has 

been systematically demonstrated that ORMAS determines properties (e.g., bond distances, 

vibrational frequencies, and natural orbital occupation numbers) for large Si(100) surface 

clusters that are in excellent agreement with those obtained with full CASSCF. When the 

CASSCF reference is unavailable, ORMAS properties agree with trends established for 

smaller, more computationally manageable systems (similar NOON values and dimer bond 

lengths). When only (2,2) subspaces are considered, ORMAS and GVP-PP are in close 

agreement with each other. As one would expect, the use of larger ORMAS subspaces 

(which are often necessary) can significantly reduce the error relative to a full CASSCF 

calculation, while the GVB-PP error remains larger. 

 Based on the systems examined, it appears that the Si(100) surface is symmetric in the 

ground state; however, the calculations reported here do not include dynamic correlation. It is 

unlikely that larger cluster models at the CASSCF level of theory will cause buckling of the 

surface dimers via inter-dimer interactions. The success of the ORMAS approach suggests 

that the distances between dimers is simply too large to allow inter-dimer interactions that are 

large enough to qualitatively alter the results presented here. This large inter-dimer distance 

is responsible for the negligible contributions from the excitations between dimers in 

ORMAS MCSCF wavefunctions. It is likely that only subspaces that contain overlapping 

orbitals would require electronic excitations between them. 

 The discrepancy between buckling mode frequencies for ORMAS partitioning 
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Schemes 2 and 3 indicate that reliable ORMAS Hessians require CI contributions from 

determinants corresponding to excitations between ! and " orbitals. This observation should 

be carefully considered when implementing ORMAS in mechanistic studies involving 

Si(100). 

In general, developing an ORMAS may not be as clear-cut as it is for Si(100). For 

more complex systems, reliable ORMAS calculations will undoubtedly rely on chemical 

intuition and validation through preliminary tests. For example, a suitable ORMAS for 

atomic diffusion of Ga on Si(100) will incorporate dimer orbitals that are strongly interacting 

with Ga orbitals into the same orbital subspace. Orbitals from spectator dimers will remain in 

separate subspaces since their interaction with the “action region” is less significant. 

 In chapter 3, a quasi-degenerate perturbation theory based on the ORMAS reference 

wavefunction has been described. For a complete active space MRPT, the effective 

Hamiltonian considers singly and doubly excited configurations, into the external orbital 

space of the MCSCF. For ORMAS-PT, the effective Hamiltonian was reformulated to also 

include internally excited configurations (IECs). A scheme was presented that directly 

enumerates the IECs to allow for efficient computation of the IECs contributions to the 

energy and wavefunction. The ORMAS-PT method has been applied to four different 

systems, with the following key conclusions: 

 1) For the two lowest 1#+
 states of LiF, ORMAS-PT reproduces the MCQDPT 

avoided crossing between the two state-averaged potential energy surfaces. The energy 

splitting between the two states shows the largest error for LiF bond lengths less than the 

equilibrium distance. Starting from the LiF equilibrium bond distance and longer, the energy 

splitting showed an error less than 0.2 kcal/mol along the reaction coordinate to the 
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dissociated products. 

 2) ORMAS-PT correctly reproduces the MRMP potential energy surface along the 

symmetric and anti-symmetric dimer buckling modes for a Si15H16 cluster. As the Si15H16 

cluster geometry is perturbed along the symmetric and anti-symmetric buckling modes, the 

energy increases at both the ORMAS-PT and MRMP levels of theory. This indicates the 

symmetric structure is the global minimum. 

 3) ORMAS-PT was applied to the oxoMn(salen) species to examine its performance 

with transition metal complexes. ORMAS-PT reproduces the MRMP neutral singlet-triplet 

energy splitting and anionic doublet-quartet energy splitting with errors less than 0.6 

kcal/mol. 

 4) ORMAS-PT reproduces the MRMP ionization potentials for trans-polyacetylene 

polymers of various lengths. For the longer polymers, ORMAS-PT was shown to 

systematically converge to the MRMP results as the number of configurations used to 

construct the reference wavefunctions is systematically increased. 

 ORMAS-PT is an efficient approximation to the MRMP/MCQDPT level of theory. 

ORMAS-PT is able to attain a high level accuracy and reduce the number of determinants 

required for a typical MRMP/MCQDPT by 1-2 orders of magnitude. It follows that ORMAS- 

PT reduces the system memory needed to handle large active spaces. The highly efficient 

ORMAS-PT approach opens the door for MRPT treatments of highly correlated systems that 

are otherwise computationally prohibited by CASSCF/FORS references. 

 In chapter 4, Ab initio electronic structure calculations were performed to develop an 

understanding of the diffusion of Ga and Ga2 on the Si(100)-2x1 reconstructed surface. 

These processes were modeled using QM (Si15H16) and SIMOMM QM/MM (Si199H92) 
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molecular clusters. The diffusion of Ga adatoms and the Ga2 dimer along the Si(100) dimer 

row was investigated. 

 Structures similar to the ones found by Takeuchi and AHPC were observed in this 

work, with differences primarily in the energy ordering among the structures. Both Takeuchi 

and AHPC reported the off-center structure as a minimum energy structure, but in the present 

work the off-center structure is found to be a transition state by both the QM and QM/MM 

cluster models. Both Takeuchi and AHPC predicted that the off-center structure is the global 

minimum; here the three-fold structure is found to be the QM minimum while the on-dimer 

structure is predicted to be the QM/MM minimum. AHPC predict that the on-dimer structure 

is a transition state, which agrees with the QM cluster model used here. On the other hand, 

the QM/MM cluster model predicts the on-dimer site to be a minimum energy structure. In 

any event, the low MRMP2 relative energies from both the QM and QM/MM models would 

seem to indicate that the on-dimer site is a minimum on the potential energy surface. 

 The order of stability for structures that are common to both QM and QM/MM models 

is inconsistent. QM/MM energies predict that the 3-4B structure is the singlet global 

minimum. No QM/MM energy barriers were found for structures that lead to the 3-4B 

structure. This indicates Ga adatoms self-assemble into atomic wires, consistent with 

experimental observations. On the other hand, MRMP2//CASSCF relative energies indicate 

an energy penalty in the QM-only cluster as the Ga2 dimer is rotated from the 5-4B position 

to the 3-4B position. This demonstrates the need for surface models that consider bulk 

effects. 

 The doublet/quartet surfaces that depict Ga adatom diffusion indicate the QM-only on-

dimer sites are transition states while the QM/MM model indicates they are minima. In 
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addition, the QM-only and QM/MM geometries have noticeable differences, because the QM 

cluster does not have sufficient structural rigidity. Compared to the SIMOMM model, the 

QM structures in which a Ga adatom or a Ga2 dimer span more than one surface dimer have 

the largest distortions in geometries. 

 Some aspects of the QM-only and QM/MM potential energy surfaces are in qualitative 

agreement. Relative energies for structures in which Ga adatoms are separated appear to be 

insensitive to the presence of bulk MM atoms. Both the QM and QM/MM models 

demonstrate that pairs of Ga adatoms spontaneously form a Ga2 dimer when they approach 

one another. Both models also predict that a Ga adatom freely diffuses along the dimer row. 

 In both QM and QM/MM models, the most energetically stable structures correlate 

with small diradical (i.e., nearly closed shell) character. These structures correspond to 

arrangements of Ga adatoms or Ga2 dimer that maximize the interaction with the dangling 

dimer bonds. In addition, the formation of the Ga2 dimer bond surely plays an important role 

in the stabilization of the surface clusters investigated here. 

In chapter 5, three criteria were presented as guidelines to validate KS orbital 

interpretations in excited state chemistry: 

1) The TDA-TDDFT properties, particularly the excitation energy, must be in good 

agreement with the full TDDFT method  

2) If criterion 1 is satisfied and if there is a dominant TDA-TDDFT coefficient (e.g., 

Xi!a>|0.9|), then the excited state may be interpreted in terms of the corresponding 

excitation i!a. 

3) The spectrum predicted by TDDFT and TDA-TDDFT must be in good agreement 

with experiment.  
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Since KS orbitals are not physical observables, the use of KS orbitals in the interpretation of 

photochemical behavior must be carefully considered. Like CIS, TDA-TDDFT coefficients 

can clearly indicate which orbital pairs contribute to a particular excited state transition.  

For the platinum(II) complexes, the TDA-TDDFT predictions of the lowest 

absorption energies were in agreement the TDDFT absorption frequencies (criterion #1). The 

lowest energy transitions for the series of platinum(II) complexes were shown to be 

dominated by a single excitation (HOMO!LUMO) (criterion #2). Both the TDA-TDDFT 

and TDDFT calculated absorption energies of the platinum(II) complexes are in agreement 

with experimental measurements (criterion #3). Since all three criteria were satisfied for the 

platinum(II) complexes, a Kohn-Sham orbital interpretation of the absorption trend is valid 

and shown to successfully predict the trend in absorption energies. Conversely, a series of 

Mg-porhoryns was shown to have double excitation character. Thus, the series of Mg-

porhoryn systems does not satisfy criterion #2 for an orbital interpretation of the absorption 

trends.  

In chapter 6, the FMO method was been applied to mesoporous silica nanoparticles 

(MSN) that mimic a small section of a mesopore consistent with the MCM-41 morphology. 

As the FMO level is increased from FMO2 to FMO3, the energy, the dipole moment, and the 

energy gradients approach the full RHF values. The size of the model system used to 

construct the AFOs does not affect the structural energies, but the AFO model size does 

affect the errors in the dipole moment and the energy gradients. Both FMO2 and FMO3 

calculations that employ AFOs constructed from a large model systems show less error in the 

dipole moment and the energy gradient than AFOs constructed with small model systems. 



www.manaraa.com

 161 

 Out of all the fragmentation schemes discussed here, the approach that uses the 

fewest number of monomers (14a/s) has the smallest errors. FMO3 is necessary to achieve 

results that are comparable to RHF. It is suggested here that using basis sets larger basis sets 

than STO-3G to study MSNs would result in properties close to the full RHF properties. 
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